Electroelastic fields of the direct piezoelectric effect in the deformation of elastic piezoelectric ceramic bodies

1974 ◽  
Vol 10 (9) ◽  
pp. 927-931
Author(s):  
Z. S. Agranovich ◽  
N. I. Derevyanko
2015 ◽  
Vol 645-646 ◽  
pp. 972-979
Author(s):  
Yan Bo Wei ◽  
Li Ping Shi ◽  
Hai Zhou

In this article the micro flow self-sensing actuator has carried on the theoretical analysis and experimental research. Using output micro-displacement generated by the first inverse piezoelectric effect to realize cell micro flow injection, using output voltage generated by secondary direct piezoelectric effect of piezoelectric ceramic to self-sensing the output displacement in the process of the micro flow injection. The experimental results show that the micro-displacement of micro-flow self-sensing actuator has nonlinear error, error is 5.03%. The error between measured micro-displacement and self-sensing micro-displacement is 63.13%. In this paper, the error causes analysis of micro-flow self-sensing actuator is from non-linearity and hysteresis, external factors, it lay the foundation for the further study of micro-flow self-sensing actuator.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


2015 ◽  
Vol 86 (7) ◽  
pp. 076102 ◽  
Author(s):  
T. J. A. Mori ◽  
P. Stamenov ◽  
L. S. Dorneles

2015 ◽  
Vol 645-646 ◽  
pp. 920-925 ◽  
Author(s):  
Hong Wu ◽  
Long Biao He ◽  
Jing Lin Zhou ◽  
Ping Yang

Understanding and measuring the displacement characteristics of piezoelectric ceramic with electric field exciting are particularly important. The piezoelectric coefficient d33 as the indication of its displacement characteristics, is the key parameter of its energy transformation. In this paper, the characteristics of two kinds of piezoelectric ceramics, PZT4 and PZT5 were studied by the laser interferometer measurement. The influence factors of d33 were studied, including the frequency and amplitude of the exciting signal, the ways of holding, and the loading sequence. Then the measurement results of piezoelectric ceramic with laser interferometer and the quasi-static method were compared, the results showed they had consistence and the analysis of the piezoelectric coefficient d33 measurement by converse piezoelectric effect and by piezoelectric effect was discussed.


Author(s):  
Xinyao Sun ◽  
Jinggan Shao ◽  
Yang Zhou ◽  
Ci Yuan ◽  
Yang Li ◽  
...  

Aiming at the problem of bolt looseness in structures, this paper proposes an active control method of axial force monitoring through guided wave and axial force compensation via the inverse piezoelectric effect of a piezoelectric ceramic gasket. Based on the finite element model, the propagation process of guided wave wave in bolted connectors is analyzed, which shows that the transmitted wave energy increases with the increase of bolt clamping force. The analysis of the stress-strain characteristics of the axially polarized and radially polarized piezoelectric ceramic gasket shows that the axially polarized piezoelectric ceramic gasket is more suitable for the control of bolt clamping force. The finite element analysis of the application of piezoelectric ceramic gasket in bolt axial force control shows that the power of guided wave signal increases monotonously with the increase of loaded electric field strength. In accordance with these theoretical methods and research, an active control system for bolt axial force is established in this experiment. The system monitors the power of the guided wave signal in real time and controls the axial force of the bolt by adjusting the intensity of the piezoelectric effect, which achieves an accurate control effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kyungrim Kim ◽  
Jinwook Kim ◽  
Xiaoning Jiang ◽  
Taeyang Kim

In force measurement applications, a piezoelectric force sensor is one of the most popular sensors due to its advantages of low cost, linear response, and high sensitivity. Piezoelectric sensors effectively convert dynamic forces to electrical signals by the direct piezoelectric effect, but their use has been limited in measuring static forces due to the easily neutralized surface charge. To overcome this shortcoming, several static (either pure static or quasistatic) force sensing techniques using piezoelectric materials have been developed utilizing several unique parameters rather than just the surface charge produced by an applied force. The parameters for static force measurement include the resonance frequency, electrical impedance, decay time constant, and capacitance. In this review, we discuss the detailed mechanism of these piezoelectric-type, static force sensing methods that use more than the direct piezoelectric effect. We also highlight the challenges and potentials of each method for static force sensing applications.


2017 ◽  
Vol 111 (14) ◽  
pp. 142902 ◽  
Author(s):  
A. Stapleton ◽  
M. R. Noor ◽  
J. Sweeney ◽  
V. Casey ◽  
A. L. Kholkin ◽  
...  

Author(s):  
Jian Liu ◽  
Jinhao Qiu ◽  
Weijie Chang ◽  
Hongli Ji ◽  
Kongjun Zhu

Metal-core piezoelectric fiber (MPF) is a new type of piezoelectric ceramic device with small size, and has great potential to be used as structurally integrated transducers for guided-wave (GW) structural health monitoring. This paper focuses on the use of MPF as ultrasonic Lamb wave receivers. First, the MPF sensor voltage response is derived by coupling the direct piezoelectric effect to the wave strain field excited by circular crested actuator. The obtained theoretical result is validated on an aluminum plate. Furthermore, the experiment that compares the MPF response to Lamb wave with the PZT response is performed. The results show that MPF sensors can be used to sense Lamb waves clearly. In the end, the directivity of MPF response to Lamb waves was investigated, and another experiment is performed to examine the directivity of MPF response to Lamb waves. The result shows that MPF has high directivity, which can be exploited to triangulate the location of an ultrasound source without prior knowledge of the wave velocity in the medium.


Sign in / Sign up

Export Citation Format

Share Document