The concentration of dopamine, 5-hydroxytryptamine, and some of their acid metabolites in the brain of genetically diabetic rats

1985 ◽  
Vol 10 (5) ◽  
pp. 611-616 ◽  
Author(s):  
R. P. S. Kwok ◽  
E. K. Walls ◽  
A. V. Juorio
Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 621
Author(s):  
Ernest Adeghate ◽  
Crystal M. D’Souza ◽  
Zulqarnain Saeed ◽  
Saeeda Al Jaberi ◽  
Saeed Tariq ◽  
...  

Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC), and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal (PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus. The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney. Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain. NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED expression in the kidney, liver and brain of diabetic rats.


2012 ◽  
Vol 1 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Mingming Huang ◽  
Lifeng Gao ◽  
Liqin Yang ◽  
Fuchun Lin ◽  
Hao Lei

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Kira V. Derkach ◽  
Vera M. Bondareva ◽  
Oxana V. Chistyakova ◽  
Lev M. Berstein ◽  
Alexander O. Shpakov

In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation byβ-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.


1995 ◽  
Vol 186 (2-3) ◽  
pp. 200-202 ◽  
Author(s):  
R. Ramakrishnan ◽  
A. Namasivayam
Keyword(s):  

2018 ◽  
Vol 33 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Ganiyu Oboh ◽  
Sunday I. Oyeleye ◽  
Omoyemi A. Akintemi ◽  
Tosin A. Olasehinde

2018 ◽  
Vol 391 (11) ◽  
pp. 1237-1245 ◽  
Author(s):  
Xia Zhu ◽  
Ya-qin Cheng ◽  
Qian Lu ◽  
Lei Du ◽  
Xiao-xing Yin ◽  
...  

2015 ◽  
Vol 40 (10) ◽  
pp. 1078-1081 ◽  
Author(s):  
Yoswaris Semaming ◽  
Jirapas Sripetchwandee ◽  
Piangkwan Sa-nguanmoo ◽  
Hiranya Pintana ◽  
Patchareewan Pannangpetch ◽  
...  

Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.


Author(s):  
Caner F. Demir ◽  
Metin Balduz ◽  
İrem Taşcı ◽  
Tuncay Kuloğlu

Sign in / Sign up

Export Citation Format

Share Document