nonessential gene
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Gholamreza Jafari ◽  
Nastaran Allahyari ◽  
Amir Kargaran ◽  
Ali Hosseiny

Despite its high and direct impact on nearly all biological processes, the underlying structure of gene-gene interaction networks is investigated so far according to pair connections. To address this, we explore the gene interaction networks of the yeast Saccharomyces cerevisiae beyond pairwise interaction using the structural balance theory (SBT). Specifically, we ask whether essential and nonessential gene interaction networks are structurally balanced. We study triadic interactions in the weighted signed undirected gene networks and observe that balanced and unbalanced triads are over and underrepresented in both networks, thus beautifully in line with the strong notion of balance. Moreover, we note that the energy distribution of triads is significantly different in both essential and nonessential networks compared with the shuffled networks. Yet, this difference is greater in the essential network regarding the frequency as well as the energy of triads. Additionally, results demonstrate that triads in the essential gene network are more interconnected through sharing common links, while in the nonessential network they tend to be isolated. Last but not least, we investigate the contribution of all-length signed walks and its impact on the degree of balance. Our findings reveal that interestingly when considering longer cycles the nonessential gene network is more balanced compared to the essential network.


2021 ◽  
Author(s):  
Shengjian Yuan ◽  
Juan Shi ◽  
Jianrong Jiang ◽  
Yingfei Ma

Abstract Reduction of tailed-phage genomes to generate viable minimal genome phages is important for expanding our understanding of phage biology, providing insights for phage synthetic biology. Many efforts have been made to minimize living cells, but such work remains a challenge for phages due to the extraordinary genomic diversity and lack of genome-scale editing techniques. Here, we developed a CRISPR/Cas9-based iterative phage genome reduction (CiPGr) approach to detect the nonessential gene set of phages and minimize phage genomes. By CiPGr, inactivated genes accumulated on the phage genome, and mutant progeny with robust growth gradually arose, eventually becoming predominant in the populations. CiPGr was applied to four distinct tailed phages (model phages T7 and T4; wild-type phages seszw and selz), resulting in mutants of these phages with deletion of 8–20% (3.3–33 kbp) sequences, and leading to minimal genomes. Metagenomic sequencing of the mutant phage populations generated showed that 46.7 to 65.4% of genes of these phages were removed. Loss of some genes (39.6%-50%) in the removable gene sets was likely severely detrimental to phage growth. This made the corresponding mutant progenies recede in the populations, leading to the failure of detection of these genes in the genomes of the isolated mutants. In summary, our results for these four distinct tailed phages demonstrated that CiPGr is a generic yet effective approach suitable for use in novel phages without prior knowledge.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Kristina Klobucar ◽  
Shawn French ◽  
Jean-Philippe Côté ◽  
James R. Howes ◽  
Eric D. Brown

ABSTRACT Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ∼30, ∼36, and ∼40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability. IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli. We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics.


Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 60 ◽  
Author(s):  
Elizabeth Ramírez-Medina ◽  
Elizabeth A. Vuono ◽  
Lauro Velazquez-Salinas ◽  
Ediane Silva ◽  
Ayushi Rai ◽  
...  

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs with significant economic consequences to the swine industry. The ASFV genome encodes for more than 160 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame (ORF) MGF360-16R. Kinetic studies of virus RNA transcription demonstrated that the MGF360-16R gene is transcribed as a late virus protein. Analysis of host–protein interactions for the MGF360-16R gene using a yeast two-hybrid screen identified SERTA domain containing 3 (SERTAD3) and syndecan-binding protein (SDCBP) as host protein binding partners. SERTAD3 and SDCBP are both involved in nuclear transcription and SDCBP has been shown to be involved in virus traffic inside the host cell. Interaction between MGF360-16R and SERTAD3 and SDCBP host proteins was confirmed in eukaryotic cells transfected with plasmids expressing MGF360-16R and SERTAD3 or SDCBP fused to fluorescent tags. A recombinant ASFV lacking the MGF360-16R gene (ASFV-G-ΔMGF360-16R) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that MGF360-16R is a nonessential gene. ASFV-G-ΔMGF360-16R had a similar replication ability in primary swine macrophage cell cultures when compared to its parental virus ASFV-G. Experimental infection of domestic pigs showed that ASFV-G-ΔMGF360-16R is as virulent as the parental virus ASFV-G.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Kathy Parisi ◽  
Stephen R. Doyle ◽  
Eunice Lee ◽  
Rohan G. T. Lowe ◽  
Nicole L. van der Weerden ◽  
...  

ABSTRACT Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae. Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum. These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.


2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Clyde A. Hutchison ◽  
Chuck Merryman ◽  
Lijie Sun ◽  
Nacyra Assad-Garcia ◽  
R. Alexander Richter ◽  
...  

ABSTRACT Global transposon mutagenesis is a valuable tool for identifying genes required for cell viability. Here we present a global analysis of the orientation of viable Tn5-Puror (Tn5-puromycin resistance) insertions into the near-minimal bacterial genome of JCVI-syn2.0. Sixteen of the 478 protein-coding genes show a noticeable asymmetry in the orientation of disrupting insertions of Tn5-Puror. Ten of these are located in operons, upstream of essential or quasi-essential genes. Inserts transcribed in the same direction as the downstream gene are favored, permitting read-through transcription of the essential or quasi-essential gene. Some of these genes were classified as quasi-essential solely because of polar effects on the expression of downstream genes. Three genes showing asymmetry in Tn5-Puror insertion orientation prefer the orientation that avoids collisions between read-through transcription of Tn5-Puror and transcription of an adjacent gene. One gene (JCVISYN2_0132 [abbreviated here as “_0132”]) shows a strong preference for Tn5-Puror insertions transcribed upstream, away from the downstream nonessential gene _0133. This suggested that expression of _0133 due to read-through from Tn5-Puror is lethal when _0132 function is disrupted by transposon insertion. This led to the identification of genes _0133 and _0132 as a toxin-antitoxin pair. The three remaining genes show read-through transcription of Tn5-Puror directed downstream and away from sizable upstream intergenic regions (199 bp to 363 bp), for unknown reasons. In summary, polar effects of transposon insertion can, in a few cases, affect the classification of genes as essential, quasi-essential, or nonessential and sometimes can give clues to gene function. IMPORTANCE In studies of the minimal genetic requirements for life, we used global transposon mutagenesis to identify genes needed for a minimal bacterial genome. Transposon insertion can disrupt the function of a gene but can also have polar effects on the expression of adjacent genes. In the Tn5-Puror construct used in our studies, read-through transcription from Tn5-Puror can drive expression of downstream genes. This results in a preference for Tn5-Puror insertions transcribed toward a downstream essential or quasi-essential gene within the same operon. Such polar effects can have an impact on the classification of genes as essential, quasi-essential, or nonessential, but this has been observed in only a few cases. Also, polar effects of Tn5-Puror insertion can sometimes give clues to gene function.


2015 ◽  
Vol 5 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Jun-Song Chen ◽  
Janel R Beckley ◽  
Nathan A McDonald ◽  
Liping Ren ◽  
MariaSanta Mangione ◽  
...  

Abstract Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.


2014 ◽  
Vol 644-650 ◽  
pp. 5197-5201
Author(s):  
Xiao Liu ◽  
Xiao Li Geng ◽  
Hong Ling Tang

This study aimed to pursue the correlation between essential/nonessential gene and protein subcellular localization. The protein sequences of the essential/nonessential genes of 28 prokaryotes in Database of Essential Genes were analyzed by PSORTb3.0. Results show that proteins of essential genes locate in cytoplasm with relatively high percentage, i.e., in the range of 40% to 55%. Percentages of the proteins of essential genes locate in cytoplasma membrane are lower than that of nonessential genes, which mostly are about 15%. However, the values of proteins of nonessential genes are mostly about 20%, and that of Gram-positive bacteria are close to 30%. The distributions of protein subcellular localization of the essential/nonessential genes are different evidently. This could be used for classification of essential and nonessential genes.


2012 ◽  
Vol 29 (5) ◽  
pp. 470-476 ◽  
Author(s):  
Fuminori Sakamoto ◽  
Takuya Nankawa ◽  
Toshihiko Ohnuki ◽  
Tsutomu Fujii ◽  
Haruyuki Iefuji

Sign in / Sign up

Export Citation Format

Share Document