Effects of training and exhaustive exercise on the mitochondrial oxidative capacity of brown adipose tissue

1984 ◽  
Vol 4 (11) ◽  
pp. 987-993 ◽  
Author(s):  
K. Gohil ◽  
S. Henderson ◽  
S. E. Terblanche ◽  
G. A. Brooks ◽  
L. Packer

Oxidation of pyruvate, α-ketoglutarate, palmitoylcarnitine, succinate, and ferrocytochrome c by interscapular-brown-adipose-tissue (BAT) mitochondria of untrained and trained rats were measured at rest and alter running to exhaustion. At rest, BAT mitochondria from trained rats showed significantly lower activities (<50%) for the oxidation of all the substrates. In untrained rats the activities of the enzymes for the oxidation of all the substrates except pyruvate and succinate were lower at exhaustion compared to the resting state when expressed on a per-gram-fresh-Weight basis. In trained rats all of the enzyme activities increased as a result of exhaustive exercise. These differences between the two groups of rats in the post-exercise changes in oxidative capacities suggest that following an initial adaptation, resulting in a large decrease in mitochondrial oxidative activity, training protects the residual oxidative pathways against exercise-induced inactivation. These data show that unlike exposure to cold, or overfeeding, a physiological stimulus such as exercise reduces the oxidative capacity of BAT, and therefore may reduce the thermogenic activity of the tissue in endurance-trained rats as has been addressed in the scientific literature.

1992 ◽  
Vol 282 (1) ◽  
pp. 231-235 ◽  
Author(s):  
D M Smith ◽  
S R Bloom ◽  
M C Sugden ◽  
M J Holness

Starvation (48 h) decreased the concentration of mRNA of the insulin-responsive glucose transporter isoform (GLUT 4) in interscapular brown adipose tissue (IBAT) (56%) and tibialis anterior (10%). Despite dramatic [7-fold (tibialis anterior) and 40-fold (IBAT)] increases in glucose utilization after 2 and 4 h of chow re-feeding, no significant changes in GLUT 4 mRNA concentration were observed in these tissues over this re-feeding period. The results exclude changes in GLUT 4 mRNA concentration in mediating the responses of glucose transport in these tissues to acute re-feeding after prolonged starvation.


1991 ◽  
Vol 277 (3) ◽  
pp. 625-629 ◽  
Author(s):  
J P Revelli ◽  
R Pescini ◽  
P Muzzin ◽  
J Seydoux ◽  
M G Fitzgerald ◽  
...  

The aim of the present work was to study the effect of hypothyroidism on the expression of the beta-adrenergic receptor (beta-AR) in interscapular brown adipose tissue and heart. The total density of plasma membrane beta-AR per tissue is decreased by 44% in hypothyroid rat interscapular brown adipose tissue and by 55% in hypothyroid rat heart compared with euthyroid controls. The effects of hypothyroidism on the density of both beta 1- and beta 2-AR subtypes were also determined in competition displacement experiments. The densities of beta 1- and beta 2-AR per tissue are decreased by 50% and 48% respectively in interscapular brown adipose tissue and by 52% and 54% in the heart. Northern blot analysis of poly(A)+ RNA from hypothyroid rat interscapular brown adipose tissue demonstrated that the levels of beta 1- and beta 2-AR mRNA per tissue are decreased by 73% and 58% respectively, whereas in hypothyroid heart, only the beta 1-AR mRNA is decreased, by 43%. The effect of hypothyroidism on the beta 1-AR mRNA is significantly more marked in the interscapular brown adipose tissue than in the heart. These results indicate that beta-AR mRNA levels are differentially regulated in rat interscapular brown adipose tissue and heart, and suggest that the decrease in beta-AR number in interscapular brown adipose tissue and heart of hypothyroid animals may in part be explained by a decreased steady-state level of beta-AR mRNA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Van Schaik ◽  
C. Kettle ◽  
R. Green ◽  
W. Sievers ◽  
M. W. Hale ◽  
...  

AbstractThe role of central orexin in the sympathetic control of interscapular brown adipose tissue (iBAT) thermogenesis has been established in rodents. Stimulatory doses of caffeine activate orexin positive neurons in the lateral hypothalamus, a region of the brain implicated in stimulating BAT thermogenesis. This study tests the hypothesis that central administration of caffeine is sufficient to activate BAT. Low doses of caffeine administered either systemically (intravenous [IV]; 10 mg/kg) and centrally (intracerebroventricular [ICV]; 5–10 μg) increases BAT thermogenesis, in anaesthetised (1.5 g/kg urethane, IV) free breathing male rats. Cardiovascular function was monitored via an indwelling intra-arterial cannula and exhibited no response to the caffeine. Core temperature did not significantly differ after administration of caffeine via either route of administration. Caffeine administered both IV and ICV increased neuronal activity, as measured by c-Fos-immunoreactivity within subregions of the hypothalamic area, previously implicated in regulating BAT thermogenesis. Significantly, there appears to be no neural anxiety response to the low dose of caffeine as indicated by no change in activity in the basolateral amygdala. Having measured the physiological correlate of thermogenesis (heat production) we have not measured indirect molecular correlates of BAT activation. Nevertheless, our results demonstrate that caffeine, at stimulatory doses, acting via the central nervous system can increase thermogenesis, without adverse cardio-dynamic impact.


Author(s):  
Clara Huesing ◽  
Rui Zhang ◽  
Sanjeev Gummadi ◽  
Nathan Lee ◽  
Emily Qualls‐Creekmore ◽  
...  

1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


2015 ◽  
Vol 67 (4) ◽  
pp. 1431-1431
Author(s):  
E Editorial

The Editor-in-Chief has been informed that the results in Fig. 2A in the article: Single and combined effects of acute and chronic non-thermal stressors on rat interscapular brown adipose tissue metabolic activity, published in the Archives of Biological Sciences in 2013, Vol. 65, Issue 3, partially overlap with the results in Fig. 2, published in the article: Lakic I, Drenca T, Djordjevic J, Vujovic P, Jasnic N, Djurasevic S, Dronjak-Cucakovic S, Cvijic G. Arch Biol Sci. 2011;63(3):589-96, DOI:10.2298/ABS1103589L. After inspection of these articles and illustrations, and after discussion with the corresponding author of both articles, it was revealed that this is a case of partial overlap, i.e. of the authors presenting new findings that contain a comparatively small amount of previously published information. By publishing this corrigendum the journal is providing appropriate cross-referencing to the earlier work. <br><br><font color="red"><b> Link to the corrected article <u><a href="http://dx.doi.org/10.2298/ABS1303919C">10.2298/ABS1303919C</a></b></u>


1983 ◽  
Vol 245 (6) ◽  
pp. E582-E586 ◽  
Author(s):  
M. Hayashi ◽  
T. Nagasaka

Fasting-induced changes in thermogenic responses to norepinephrine (NE, 4.0 micrograms X kg-1 X min-1 iv) were studied in anesthetized rats previously cold acclimated. The rats were divided into five groups at the end of 30–40 days of cold acclimation (5 degrees C). The five groups were kept for 5 days at 25 degrees C and fed (intact fed), fasted (intact fasted), fasted with daily treatment with thyroxine (T4, 2 micrograms/kg sc), thyroidectomized and fed, or thyroidectomized and fasted. In the intact fasted group, in which the weight of brown adipose tissue decreased, NE-induced increases in oxygen consumption, colonic temperature (T col), and temperature of the interscapular brown adipose tissue (TBAT) were markedly suppressed. The two thyroidectomized groups also showed a reduction in thermogenic response. In these three groups, TBAT was lower than Tcol throughout NE infusion. In the T4-treated fasted group, fasting-induced suppression of thermogenic response to NE was largely prevented. In the intact fed and the T4-treated fasted groups, TBAT attained higher values than Tcol during NE infusion. Plasma levels of thyroid hormones were significantly lower in the intact fasted group than in the intact fed or the T4-treated fasted group. These results suggest that fasting-induced suppression of the thermogenic response to NE is largely due to the reduced thermogenic response of brown adipose tissue to NE. The lowering of the levels of the thyroid hormones induced by fasting may be one of a number of causes of the reduction in the thermogenic response of brown adipose tissue.


1985 ◽  
Vol 248 (5) ◽  
pp. E607-E617 ◽  
Author(s):  
J. G. Vander Tuig ◽  
J. Kerner ◽  
D. R. Romsos

Obesity-producing, hypothalamic knife cuts and ventromedial hypothalamic (VMH) lesions in ad libitum-fed adult rats increased intake of a high-fat diet (123 and 130%) and energy retention (880 and 1,099%) during the 4-wk period postsurgery; even when pair fed to control rats, energy retention of the knife-cut and lesioned rats was still elevated (105 and 155%). Thermogenic capacity of brown adipose tissue (BAT), estimated from guanosine diphosphate (GDP) binding to BAT mitochondria, was unchanged in hyperphagic knife-cut and VMH-lesioned rats and was reduced approximately 50% when these rats were pair fed to controls. Urinary excretion of norepinephrine (NE) was approximately twofold higher in ad libitum-fed, knife-cut, and lesioned rats than in control rats; restriction of energy intake decreased NE excretion to control values. Rates of NE turnover in heart paralleled urinary NE excretion, whereas NE turnover in BAT was generally not increased in the hyperphagic rats. Urinary epinephrine excretion, an index of adrenal medullary activity, was depressed in all knife-cut and VMH-lesioned rats. Hyperphagia coupled with a lack of increased heat production in BAT causes gross obesity in ad libitum-fed, knife-cut, and VMH-lesioned rats, whereas obesity in pair-fed rats develops in part at least as a result of reduced heat production by BAT.


1986 ◽  
Vol 251 (2) ◽  
pp. R240-R242 ◽  
Author(s):  
A. Niijima

The activity of sympathetic nerves innervating interscapular brown adipose tissue of the rat was recorded. Intravenous administrations of glucose (100-300 mg/kg) enhanced the nerve activity. However, mannose, fructose, or galactose (300 mg/kg) showed no effect, suggesting the response is related to diet-induced thermogenesis in the brown adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document