Lipogenesis in response to an oral glucose load in fed and starved rats

1981 ◽  
Vol 1 (6) ◽  
pp. 469-476 ◽  
Author(s):  
Mary C. Sugden ◽  
David L. Watts ◽  
Christopher E. Marshall

Lipogenesis in livers of fed but not of starved rats is increased after intragastric feeding with glucose. In contrast, lipogenesis in brown adipose tissue increases in both fed and starved animals. These observations suggest that lipogenesis in brown adipose tissue is regulated by mechanisms in addition to, or other than, those operating in liver. The fate of newly synthesized lipid in brown adipose tissue is not known. However, the formation of palmitoyl-carnitine from palmitoyl-CoA and carnitine by mitochondria from brown fat was inhibited by malonyl-CoA. Although inhibition was not 100%, it is implied that mitochondrial uptake of the newly synthesized fat by the carnitine acyltransferase system is restricted under conditions of increased lipogenesis.

Author(s):  
Rahel Catherina Loeliger ◽  
Claudia Irene Maushart ◽  
Gani Gashi ◽  
Jaël Rut Senn ◽  
Martina Felder ◽  
...  

Objective Human brown adipose tissue (BAT) is a thermogenic tissue activated by the sympathetic nervous system in response to cold. It contributes to energy expenditure (EE) and takes up glucose and lipids from the circulation. Studies in rodents suggest that BAT contributes to the transient rise in EE after food intake, so called diet-induced thermogenesis (DIT). We investigated the relationship between human BAT activity and DIT in response to glucose intake in 17 healthy volunteers. Methods We assessed DIT, cold induced thermogenesis (CIT) and maximum BAT activity at three separate study visits within two weeks. DIT was measured by indirect calorimetry during an oral glucose tolerance-test. CIT was assessed as the difference in EE after cold exposure of two hours duration as compared to warm conditions. Maximal activity of BAT was assessed by 18F-FDG-PET/MRI after cold exposure and concomitant pharmacological stimulation with Mirabegron. Results 17 healthy men (mean age 23.4 years, mean BMI 23.2 kg/m2) participated in the study. EE increased from 1908 (±181) kcal/24 hours to 2128 (±277) kcal/24 hours (p<0.0001, +11.5%) after mild cold exposure. An oral glucose load increased EE from 1911 (±165) kcal/24 hours to 2096 (±167) kcal/24 hours at 60 minutes (p<0.0001, +9.7%). The increase in EE in response to cold was significantly associated with BAT activity (R2=0.43, p=0.004). However, DIT was not associated with BAT activity (R2=0.015, p=0.64). Conclusion DIT after an oral glucose load was not associated with stimulated 18F-FDG uptake into BAT suggesting that DIT is independent from BAT activity in humans.


1988 ◽  
Vol 8 (5) ◽  
pp. 465-469 ◽  
Author(s):  
Gérard Mory ◽  
Myriam Gawer ◽  
Jean-Claude Kader

Chronic cold exposure of rats (9 days at 5°C) induces an alteration of the fatty acid composition of phospholipids in brown adipose tissue. The alteration is due to an increase of the unsaturation degree of these lipids. The phenomenon can be reproduced by 10−7 mole. h−1 administration of noradrenaline for 9 days in rats kept at 25°C. Thus, phospholipid alteration in brown fat of cold exposed rats is most probably a consequence of the increase of sympathetic tone which occurs in this tissue during exposure to cold.


1987 ◽  
Vol 243 (2) ◽  
pp. 437-442 ◽  
Author(s):  
M G Buckley ◽  
E A Rath

1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.


1984 ◽  
Vol 4 (11) ◽  
pp. 933-940 ◽  
Author(s):  
Stewart W. Mercer ◽  
Paul Trayhurn

Genetically obese (ob/ob) mice develop insulin resistance in brown adipose tissue during the fifth week of life. Prior to this, at 26 days of age, oh/oh mice show a substantial increase in GDP binding to brownadipose-tissue mitochondria during acute cold exposure. When insulin resistance in brown fat develops, by 35 days of age, the increase in GDP binding in response to cold is markedly reduced. Studies with 2-deoxyglucose suggest that insulin resistance in brown adipose tissue could impair thermogenic responsiveness during acute cold exposure by limiting the ability of the tissue to take up glucose.


1971 ◽  
Vol 19 (11) ◽  
pp. 670-675 ◽  
Author(s):  
IRÉNE AHLABO ◽  
TUDOR BARNARD

During cytochemical studies of brown adipose tissue from rat, cytoplasmic organelles that apparently show peroxidative activity have been observed. The majority of the organelles have a diameter of 0.1-0.8 µ and a finely granular homogeneous matrix and are delimited by a single unit membrane. No sign of a "crystalloid" was seen. In order to demonstrate the peroxidative activity of the peroxisomal enzyme catalase in the organelles, brown adipose tissue was incubated in a medium containing 3,3'-diaminobenzidine tetrahydrochloride, after prefixation in 3% glutaraldehyde. The activity was blocked by 3-amino-l,2,4-triazole (an inhibitor of catalase) but not by KCN. Omission of exogenous hydrogen peroxide did not inhibit the reaction in the organelles. It is concluded that rat brown adipose tissue contains peroxisomes and, since the abundance of these organelles varies according to the physiologic activity of the tissue, peroxisomes may have a role in the thermogenic metabolism of brown fat.


1987 ◽  
Vol 252 (2) ◽  
pp. R402-R408 ◽  
Author(s):  
T. Yoshida ◽  
J. S. Fisler ◽  
M. Fukushima ◽  
G. A. Bray ◽  
R. A. Schemmel

The effects of dietary fat content, lighting cycle, and feeding time on norepinephrine turnover in interscapular brown adipose tissue, heart, and pancreas, and on blood 3-hydroxybutyrate, serum glucose, insulin, and corticosterone have been studied in two strains of rats that differ in their susceptibility to dietary obesity. S 5B/Pl rats, which are resistant to dietary obesity, have a more rapid turnover of norepinephrine in interscapular brown adipose tissue and heart and a greater increase in the concentration of norepinephrine in brown fat when eating a high-fat diet than do Osborne-Mendel rats, which are sensitive to fat-induced obesity. Light cycle and feeding schedule are important modulators of sympathetic activity in heart and pancreas but not in brown fat. Rats of the resistant strain also have higher blood 3-hydroxybutyrate concentrations and lower insulin and corticosterone levels than do rats of the susceptible strain. A high-fat diet increases 3-hydroxybutyrate concentrations and reduces insulin levels in both strains. These studies show, in rats eating a high-fat diet, that differences in norepinephrine turnover, particularly in brown adipose tissue, may play an important role in whether dietary obesity develops and in the manifestations of resistance to this phenomenon observed in the S 5B/Pl rat.


1985 ◽  
Vol 248 (2) ◽  
pp. E230-E235
Author(s):  
R. J. Schimmel ◽  
L. McCarthy

Hamsters consuming a “cafeteria diet” had more brown adipose tissue than did chow-fed hamsters. The growth of the brown fat depots in cafeteria-fed hamsters was accompanied by increases in tissue protein and cytochrome oxidase. To assess the thermogenic capacity of brown fat mitochondria, the binding of GDP to isolated mitochondria was measured. Mitochondrial GDP binding was not affected by feeding the cafeteria diet for 4 wk, but more prolonged cafeteria feeding for 8 wk did, however, increase the binding of GDP to isolated mitochondria. The morphology of brown adipose tissue was altered during cafeteria feeding. The brown adipose tissue of cafeteria-fed hamsters had more large unilocular cells than did the brown adipose tissue of chow-fed hamsters. In addition, the average adipocyte diameter was greater in brown adipose tissue of cafeteria-fed hamsters. These data support the presence of a dietary regulation of brown adipose tissue growth in hamsters. The growth of brown adipose tissue in hamsters eating the cafeteria diet appears to result largely from proliferation of adipocytes, as evidenced by the increases in tissue protein and cytochrome oxidase during cafeteria feeding, but some hypertrophy of the adipocytes also occurs. A dietary regulation of brown fat thermogenic capacity is also apparent but this regulation is evident only after more prolonged periods of cafeteria feeding. Hamsters eating a cafeteria diet increase their caloric intake but have the same or greater body weight gain efficiency as do chow-fed animals. The absence of dietary stimulation of thermogenesis may underlie the similar efficiencies of weight gain in chow- and cafeteria-fed hamsters.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Valentina Hartwig ◽  
Letizia Guiducci ◽  
Martina Marinelli ◽  
Laura Pistoia ◽  
Tommaso Minutoli Tegrimi ◽  
...  

Purpose. A clear link between obesity and brown adipose tissue (BAT) dysfunction has been recently demonstrated. The purpose of this pilot study is to determine if near-infrared spectroscopy (NIRS) 2D imaging together with infrared thermography (IRT) is capable of identifying thermal and vascular response in the supraclavicular (SCV) areas after the ingestion of an oral glucose load as a thermogenic stimulation. Method. We studied two groups of women (obese versus lean) for discerning their different responses. NIRS and IRT images were acquired on the neck in the left SCV region during a 3 h oral glucose tolerance test (OGTT) and immediately after a cold stimulation. Results. We detected a significant thermal response of BAT in SCV fossa in both groups. Both during OGTT and after cold stimulation, skin temperature was persistently higher in lean versus obese. This response was not coupled with changes in oxygen saturation of subcutaneous tissue in that area. Discussion and Conclusion. The results show that NIRS/IRT may be a novel, noninvasive, radiation-free, easy to use, and low-cost method for monitoring, during the standard clinical practice, the diet and pharmacological intervention which aims to stimulate BAT as a potential therapeutic target against obesity and diabetes.


1967 ◽  
Vol 45 (11) ◽  
pp. 1763-1771 ◽  
Author(s):  
Jane C. Roberts ◽  
Robert E. Smith

The effects of temperature in vitro upon metabolic rates of homogenates of brown fat and liver from control and cold-acclimated rats have been examined over the range 10–37 °C. At all temperatures, brown adipose tissue exhibits a higher rate of oxygen consumption [Formula: see text] than does liver, α-ketoglutarate being used as substrate. At 10 °C, brown adipose tissue retains a larger percentage (36–38%) of its 37 °C metabolic rate than does liver (22–24%).Q10 values and energies of activation (Ea) have been determined and compared with other data reported for these tissues. At 20 °C, breaks appear in the Arrhenius plots for liver from both control and cold-acclimated rats and also for brown fat from control rats, but not for the brown fat from cold-acclimated rats. Thus brown adipose tissue from cold-acclimated rats retains relatively higher levels of respiration at temperatures below the 20 °C breaking point than does brown fat from control rats.In view of previously reported cold-induced increases in mass, vascularity, and [Formula: see text] of brown fat, this decreased temperature sensitivity in the cold-acclimated rats appears wholly consonant with the adaptive behavior of brown fat in its role as a thermogenic effector.


Sign in / Sign up

Export Citation Format

Share Document