Estimation of kinetic parameters of androgen-synthesizing enzyme activities in superfused Leydig cells from rat testes: Difference between endogenous and exogenous substrates

1984 ◽  
Vol 4 (6) ◽  
pp. 483-488 ◽  
Author(s):  
Nikolaus Kühn-Velten ◽  
Joachim Wolff ◽  
Wolfgang Staib

Kinetic parameters of 3β-hydroxysteroid dehydrogenase/isomerase, steroid-17α-monooxygenase, and steroid-17,20-lyase activities were estimated under steady-state conditions. Purified Leydig cells from rat testes were superfused with pregnenolone, progesterone, or 17α-hydroxyprogesterone. The Km values for both the monooxygenase- and the lyase-catalyzed reactions were by factors of five to ten higher if analyzed with the exogenously added substrate (0.98 and 0.65 μM, respectively) than if calculated from endogenous substrate derived from a precursor (0.10 and 0.13 μM, respectively). This discrepancy may be explained by different substrate partition between the intra- and extraceIJular spaces and by different substrate concentration at the active site of the respective enzyme, depending on whether the actual substrate is of exogenous or endogenous source.

1959 ◽  
Vol 37 (4) ◽  
pp. 737-743 ◽  
Author(s):  
Ludovic Ouellet ◽  
James A. Stewart

A theoretical treatment is worked out for the kinetic scheme[Formula: see text]in which the concentration of P1 is followed. The steady-state and transient phase equations are obtained subject to the condition that the substrate concentration is greatly in excess of the enzyme concentration. The conditions under which evidence in favor of this mechanism can be obtained from experimental data are discussed. Under certain conditions, the weight of the enzyme corresponding to one active site can be determined. Methods for the evaluation of the different constants are described.


1989 ◽  
Vol 121 (4) ◽  
pp. 477-483 ◽  
Author(s):  
Eisuke P. Murono

Abstract. The present study examined changes in steroidogenic enzyme activities which metabolize testosterone or dihydrotestosterone between days 21–73 of maturation in Band 2 and Band 3 cells isolated by centrifugation of rat testicular interstitial cells on metrizamide density gradients. 5α-reductase and 17β-hydroxysteroid dehydrogenase activities increased progressively in Band 2 and Band 3 cells between days 21–35 of maturation, then both enzyme activities declined to reach low levels in adult Band 2 and Band 3 cells. The significantly higher activities of both enzymes in Band 3, which contains a greater concentration of Leydig cells at each age, suggest their localization in Leydig cells. 5α-androstane-3α- and 3β-hydroxysteroid dehydrogenase activities increased in both Band 2 and Band 3 cells between days 21–50 of maturation and remained elevated; however, dihydrotestosterone was metabolized primarily to 5α-androstane-3α,17β-diol in Band 2 cells, while 5α-androstane-3β,17β-diol was the major metabolite of dihydrotestosterone in Band 3 cells. These studies suggest that testosterone accumulation during sexual maturation can be influenced by changing patterns of 5α-reductase and 17β-hydroxysteroid dehydrogenase activities which metabolize testosterone, and of 5α-androstane-3α- and 3β-hydroxysteroid dehydrogenase activities which metabolize dihydrotestosterone in both Band 2 and Band 3 cells.


1974 ◽  
Vol 77 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Rüdiger Ghraf ◽  
Edmund Rodney Lax ◽  
Hanns-Georg Hoff ◽  
Herbert Schriefers

ABSTRACT The androgens testosterone and 5α-dihydrotestosterone, the anabolic drug 19-nortestosterone and the anti-androgen cyproterone acetate were investigated with regard to their modifying action on the sexual differentiation of the activities of rat liver enzymes involved in steroid hormone metabolism. The activities of the enzymes (Δ4-5α-hydrogenase, 20-ketoreductase, 3α-and 3β-hydroxysteroid dehydrogenase, NAD- and NADP-dependent Δ4-3β-hydroxysteroid dehydrogenase, total steroid hydroxylases, 7α- and 16α-hydroxylase) were determined in cell-free liver fractions of male animals castrated on day 25 of life and killed on day 90; and of castrated animals which, from day 75 to 89 received daily sc injections (0.3 mg/100 g body weight) of the anabolic drug or the androgen only or in combination with cyproterone acetate (3 mg/100 g body weight). With the exception of 7α-hydroxylase castration leads to a feminization of the enzyme activity pattern. However, the degree of feminization varies from enzyme to enzyme. The administration of testosterone or of 5α-dihydrotestosterone reverses the effect of castration. With 5α-dihydrotestosterone activity values were reached which in some cases were significantly higher than those obtained with testosterone. Although both androgens restored the enzyme activities to the normal male values, neither androgen was able to compensate for the weight loss of the seminal vesicles in the dose administered. The administration of 19-nortestosterone in the same dose as testosterone is only 30 % as effective in restoring the weight loss of the seminal vesicles, but leads to identical activities of Δ4-5α-hydrogenase and of hydroxysteroid dehydrogenases as are found for testosterone. 19-Nortestosterone is without influence on the activities of total steroid hydroxylases and of 16α-hydroxylase. 16α-Hydroxylase is the only enzyme in which the activity enhancing effects of testosterone or of 5α-dihydrotestosterone can be completely blocked by the simultaneous administration of the anti-androgen cyproterone acetate. In all other enzyme activities the anti-androgen does not interfere with the effect of the androgens although it blocks their action on the weight restitution of the seminal vesicles by 60–70 %. 7α-Hydroxylase does not exhibit any androgen dependency. Neither castration nor the subsequent administration of the two androgens, or of the anabolic drug leads to any alterations in activity. However, it is interesting to note that the administration of cyproterone acetate does cause an increase in activity.


1974 ◽  
Vol 76 (1) ◽  
pp. 178-188 ◽  
Author(s):  
H. Lübbert ◽  
K. Pollow ◽  
R. Wagner ◽  
J. Hammerstein

ABSTRACT The effects of ethanol on kinetic parameters of placental Δ5-3β-hydroxysteroid dehydrogenase were studied. In the presence of high pregnenolone concentrations (50 μm, [S] > Km) the microsomal enzyme preparation exhibited an almost linear increase in activity as the ethanol concentration in the medium was raised from 2.5 to 15 % (v/v). At lower substrate concentrations ([S] << Km) ethanol caused inhibition. Other effects of ethanol were: linearity of product formation with time was prolonged; the maximal velocity was markedly increased; the Km for pregnenolone slightly decreased with increasing ethanol concentrations (2.5 to 10 %, v/v) whereas the Km for NAD remained the same. The pH and temperature optima of the reaction were unaffected by ethanol. Other organic solvents caused similar effects.


2008 ◽  
Vol 20 (4) ◽  
pp. 505 ◽  
Author(s):  
A. Wagner ◽  
R. Claus

Oestrogens and glucocorticoids are important for spermatogenesis and are regulated via aromatase for oestradiol synthesis and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) as an inactivator of cortisol. In the present study postnatal changes of these two enzymes were monitored together with testicular development and hormone concentrations. Pigs were assigned to three periods: Weeks 0–5, Weeks 5–11 or Weeks 11–17. In Period 1, groups of four piglets were killed after each week. Blood plasma and testes were sampled immediately post mortem. For Periods 2 and 3, groups of six pigs were fitted with vein catheters for daily blood collection. Testes from all pigs were obtained after killing. Levels of testosterone, oestradiol, LH, FSH and cortisol were determined radioimmunologically. The 11β-HSD 2- and aromatase-expressing cells were stained immunocytochemically. All hormones were maximal 2 weeks after birth. A rise of LH, testosterone and oestradiol occurred again at Week 17. FSH and cortisol remained basal. Parallel to the first postnatal rise, the presence of aromatase and 11β-HSD 2 in Leydig cells increased, together with germ and Sertoli cell numbers. Expression was low from 3 to 5 weeks, was resumed after Week 5 and was maximal at Week 17. The amount of 11β-HSD 2 in germ cells was greatest at birth, decreased thereafter and was absent after Week 3.


1998 ◽  
Vol 30 (6) ◽  
pp. 735-743 ◽  
Author(s):  
Carmelo Garrido-del Solo ◽  
Francisco Garcı́a-Cánovas ◽  
José Tudela ◽  
Bent H. Havsteen ◽  
Ramón Varón-Castellanos

Sign in / Sign up

Export Citation Format

Share Document