The specificity of bacterial siderophore receptors probed by bioassays

1991 ◽  
Vol 4 (4) ◽  
pp. 244-250 ◽  
Author(s):  
Wolfgang Rabsch ◽  
G�nther Winkelmann
BioMetals ◽  
2006 ◽  
Vol 19 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Delphine Destoumieux-Garzón ◽  
Jean Peduzzi ◽  
Xavier Thomas ◽  
Chakib Djediat ◽  
Sylvie Rebuffat

1995 ◽  
Vol 41 (2) ◽  
pp. 126-135 ◽  
Author(s):  
Jos M. Raaijmakers ◽  
Lentse van der Sluis ◽  
Peter A. H. M. Bakker ◽  
Bob Schippers ◽  
Margot Koster ◽  
...  

In this study, the potential of different Pseudomonas strains to utilize heterologous siderophores was compared with their competitiveness in the rhizosphere of radish. This issue was investigated in interactions between Pseudomonas putida WCS358 and Pseudomonas fluoresceins WCS374 and in interactions between strain WCS358 and eight indigenous Pseudomonas strains capable of utilizing pseudobactin 358. During four successive plant growth cycles of radish, strain WCS358 significantly reduced rhizosphere population densities of the wild-type strain WCS374 by up to 30 times, whereas derivative strain WCS374(pMR), harboring the siderophore receptor PupA for ferric pseudobactin 358, maintained its population density. Studies involving interactions between strain WCS358 and eight different indigenous Pseudomonas strains demonstrated that despite the ability of these indigenous isolates to utilize pseudobactin 358, their rhizosphere population densities were significantly reduced by strain WCS358 by up to 20 times. Moreover, rhizosphere colonization by WCS358 was not affected by any of these indigenous strains, even though siderophore-mediated growth inhibition of WCS358 by a majority of these strains was demonstrated in a plate bioassay. In conclusion, it can be stated that siderophore-mediated competition for iron is a major determinant in interactions between WCS358 and WCS374 in the rhizosphere. Moreover, our findings support the common assumption that cloning of siderophore receptor genes from one Pseudomonas strain into another can confer a competitive advantage in interactions in the rhizosphere. Interactions between WCS358 and the selected indigenous rhizosphere isolates, however, indicate that other traits also contribute to the rhizosphere competence of fluorescent Pseudomonas spp.Key words: siderophore, siderophore receptors, root colonization, fluorescent Pseudomonas.


2022 ◽  
Author(s):  
William Santus ◽  
Amisha Rana ◽  
Jason Devlin ◽  
Kaitlyn Kiernan ◽  
Carol Jacob ◽  
...  

Abstract The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. We investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium. We found that in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella, and elucidates a new function for the gut mycobiota, revealing the importance of these under-studied members of the gut ecosystem during bacterial infection.


Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1227-1238 ◽  
Author(s):  
Caleb W. Dorsey ◽  
Marcelo E. Tolmasky ◽  
Jorge H. Crosa ◽  
Luis A. Actis

The Acinetobacter baumannii 8399 clinical isolate secretes dihydroxybenzoic acid (DHBA) and a high-affinity catechol siderophore, which is different from other bacterial iron chelators already characterized. Complementation assays with enterobactin-deficient Escherichia coli strains led to the isolation of a cosmid clone containing A. baumannii 8399 genes required for the biosynthesis and activation of DHBA. Accordingly, the cloned fragment harbours a dhbACEB polycistronic operon encoding predicted proteins highly similar to several bacterial proteins required for DHBA biosynthesis from chorismic acid. Genes encoding deduced proteins related to the E. coli Fes and the Bacillus subtilis DhbF proteins, and a putative Yersinia pestis phosphopantetheinyl transferase, all of them involved in the assembly and utilization of catechol siderophores in other bacteria, were found next to the dhbACEB locus. This A. baumannii 8399 gene cluster also contained the om73, p45 and p114 predicted genes encoding proteins potentially involved in transport of ferric siderophore complexes. The deduced products of the p114 and p45 genes are putative membrane proteins that belong to the RND and MFS efflux pump proteins, respectively. Interestingly, P45 is highly related to the E. coli P43 (EntS) protein that participates in the secretion of enterobactin. Although P114 is similar to other bacterial efflux pump proteins involved in antibiotic resistance, its genetic arrangement within this A. baumannii 8399 locus is different from that described in other bacteria. The product of om73 is a Fur- and iron-regulated surface-exposed outer-membrane protein. These characteristics together with the presence of a predicted TonB box and its high similarity to other siderophore receptors indicate that OM73 plays such a role in A. baumannii 8399. The 184 nt om73–p114 intergenic region contains promoter elements that could drive the expression of these divergently transcribed genes, all of which are in close proximity to almost perfect Fur boxes. This arrangement explains the iron- and Fur-regulated expression of om73, and provides strong evidence for a similar regulation for the expression of p114.


2004 ◽  
Vol 49 (2) ◽  
pp. 579-587 ◽  
Author(s):  
Evelyn Armstrong ◽  
Julie Granger ◽  
Elizabeth L. Mann ◽  
Neil M. Price

1985 ◽  
Vol 162 (2) ◽  
pp. 715-721 ◽  
Author(s):  
H Huschka ◽  
H U Naegeli ◽  
H Leuenberger-Ryf ◽  
W Keller-Schierlein ◽  
G Winkelmann

2020 ◽  
Author(s):  
Derek C. K. Chan ◽  
Lori L. Burrows

ABSTRACTThiopeptides are a class of Gram-positive antibiotics that inhibit protein synthesis. They have been underutilized as therapeutics due to solubility issues, poor bioavailability, and lack of activity against Gram-negative pathogens. We discovered recently that a member of this family, thiostrepton, has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. Thiostrepton uses pyoverdine siderophore receptors to cross the outer membrane, and combining thiostrepton with an iron chelator yielded remarkable synergy, significantly reducing the minimal inhibitory concentration. These results led to the hypothesis that other thiopeptides could also inhibit growth by using siderophore receptors to gain access to the cell. Here, we screened six thiopeptides for synergy with the iron chelator deferasirox against P. aeruginosa and a mutant lacking the pyoverdine receptors FpvA and FpvB. Our findings suggest that thiopeptides such as thiocillin cross the outer membrane using FoxA, the ferrioxamine siderophore receptor. Other structurally related thiopeptides did not inhibit growth of P. aeruginosa, but had greater potency against methicillin-resistant Staphylococcus aureus than thiostrepton and related thiopeptides. These results suggest that thiopeptide structures have evolved with considerations for target affinity and entry into cells.


2003 ◽  
pp. 261-287 ◽  
Author(s):  
Dick van der Helm ◽  
Ranjan Chakraborty

2005 ◽  
Vol 18 (9) ◽  
pp. 950-959 ◽  
Author(s):  
Heather P. Benson ◽  
Eric Boncompagni ◽  
Mary Lou Guerinot

Rhizobia live in the soil or enter into a nitrogen-fixing symbiosis with a suitable host plant. Each environment presents different challenges with respect to iron acquisition. The soybean symbiont Bradyrhizobium japonicum 61A152 can utilize a variety of siderophores (Fe[III]-specific ligands). Purification of iron-regulated outer membrane proteins had previously allowed the cloning of a gene, fegA, from B. ja-ponicum 61A152, whose predicted protein shares significant amino acid similarity with known TonB-dependent siderophore receptors. Here, we show that fegA is in an operon with a gene, fegB, that is predicted to encode an inner membrane protein. Characterization of fegAB and fegB mutants shows that both fegA and fegB are required for utilization of the siderophore ferrichrome. Whereas the fegB mutant forms a normal symbiosis, the fegAB mutant has a dramatic phenotype in planta. Six weeks after inoculation with a fegAB strain, soybean nodules do not contain leghemoglobin and do not fix nitrogen. Infected cells contain few symbiosomes and are filled with vesicles. As ferrichrome is a fungal siderophore not likely to be available in nodules, the symbiotic defect suggests that the fegAB operon is serving a different function in planta, possibly one involved in signaling between the two partners.


2002 ◽  
Vol 184 (12) ◽  
pp. 3268-3275 ◽  
Author(s):  
Jiangsheng Shen ◽  
Allison Meldrum ◽  
Keith Poole

ABSTRACT Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document