Fungal xenosiderophores from mycobiota and diet promote Salmonella colonization of the inflamed gut

Author(s):  
William Santus ◽  
Amisha Rana ◽  
Jason Devlin ◽  
Kaitlyn Kiernan ◽  
Carol Jacob ◽  
...  

Abstract The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. We investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium. We found that in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella, and elucidates a new function for the gut mycobiota, revealing the importance of these under-studied members of the gut ecosystem during bacterial infection.

Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3403-3410 ◽  
Author(s):  
G. K. Paterson ◽  
D. B. Cone ◽  
S. E. Peters ◽  
D. J. Maskell

The enzyme phosphoglucomutase (Pgm) catalyses the interconversion of glucose 1-phosphate and glucose 6-phosphate and contributes to glycolysis and the generation of sugar nucleotides for biosynthesis. To assess the role of this enzyme in the biology of the pathogen Salmonella enterica serovar Typhimurium we have characterized a pgm deletion mutant in strain SL1344. Compared to SL1344, SL1344 pgm had impaired growth in vitro, was deficient in the ability to utilize galactose as a carbon source and displayed reduced O-antigen polymer length. The mutant was also more susceptible to antimicrobial peptides and showed decreased fitness in the mouse typhoid model. The in vivo phenotype of SL1344 pgm indicated a role for pgm in the early stages of infection, most likely through deficient O-antigen production. Although pgm mutants in other pathogens have potential as live attenuated vaccine strains, SL1344 pgm was not sufficiently attenuated for such use.


2019 ◽  
Vol 20 (18) ◽  
pp. 4339 ◽  
Author(s):  
Huan Zhang ◽  
Xiaorui Song ◽  
Peisheng Wang ◽  
Runxia Lv ◽  
Shuangshuang Ma ◽  
...  

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associated with virulence are highly expressed during the intracellular lifecycle. yaeB, which encodes an RNA methyltransferase, is also upregulated during S. Typhimurium growth in macrophages. However, the involvement of YaeB in S. Typhimurium pathogenicity is still unclear. In this study, we investigated the role of YaeB in S. Typhimurium virulence. Deletion of yaeB significantly impaired S. Typhimurium growth in macrophages and virulence in mice. The effect of yaeB on pathogenicity was related to its activation of pstSCAB, a phosphate (Pi)-specific transport system that is verified here to be important for bacterial replication and virulence. Moreover, qRT-PCR data showed YaeB was induced by the acidic pH inside macrophages, and the acidic pH passed to YeaB through inhibiting global regulator histone-like nucleoid structuring (H-NS) which confirmed in this study can repress the expression of yaeB. Overall, these findings identified a new virulence regulatory network involving yaeB and provided valuable insights to the mechanisms through which acidic pH and low Pi regulate virulence.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
César Díaz-Godínez ◽  
Julio C. Carrero

AbstractNeutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Min Yue ◽  
Xiangan Han ◽  
Leon De Masi ◽  
Chunhong Zhu ◽  
Xun Ma ◽  
...  

Abstract Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.


2003 ◽  
Vol 71 (9) ◽  
pp. 4873-4882 ◽  
Author(s):  
Qian Li ◽  
Bobby J. Cherayil

ABSTRACT Toll-like receptors (TLRs) play an important role in the innate immune response, particularly in the initial interaction between the infecting microorganism and phagocytic cells, such as macrophages. We investigated the role of TLR4 during infection of primary murine peritoneal macrophages with Salmonella enterica serovar Typhimurium. We found that macrophages from the C3H/HeJ mouse strain, which carries a functionally inactive Tlr4 gene, exhibit marked impairment of tumor necrosis factor alpha (TNF-α) secretion in response to S. enterica serovar Typhimurium infection. However, activation of extracellular growth factor-regulated kinase and NF-κB signaling pathways was relatively unaffected, as was increased expression of TNF-α mRNA. Furthermore, macrophage tolerance, which is associated with increased expression of the NF-κB p50 and p52 subunits, was induced by S. enterica serovar Typhimurium even in the absence of functional TLR4. These results indicate that during infection of macrophages by S. enterica serovar Typhimurium, TLR4 signals are required at a posttranscriptional step to maximize secretion of TNF-α. Signals delivered by pattern recognition receptors other than TLR4 are sufficient for the increased expression of the TNF-α transcript and at least some genes associated with macrophage tolerance.


2005 ◽  
Vol 73 (12) ◽  
pp. 8433-8436 ◽  
Author(s):  
A. A. Fadl ◽  
J. Sha ◽  
G. R. Klimpel ◽  
J. P. Olano ◽  
C. L. Galindo ◽  
...  

ABSTRACT We constructed Salmonella enterica serovar Typhimurium double-knockout mutants in which either the lipoprotein A (lppA) or the lipoprotein B (lppB) gene was deleted from an msbB-negative background strain by marker exchange mutagenesis. These mutants were highly attenuated when tested with in vitro and in vivo models of Salmonella pathogenesis.


2019 ◽  
Vol 25 (10) ◽  
pp. 1629-1643 ◽  
Author(s):  
Katrin Ehrhardt ◽  
Natalie Steck ◽  
Reinhild Kappelhoff ◽  
Stephanie Stein ◽  
Florian Rieder ◽  
...  

AbstractBackgroundIntestinal fibrosis is a common and serious complication of Crohn’s disease characterized by the accumulation of fibroblasts, deposition of extracellular matrix, and formation of scar tissue. Although many factors including cytokines and proteases contribute to the development of intestinal fibrosis, the initiating mechanisms and the complex interplay between these factors remain unclear.MethodsChronic infection of mice with Salmonella enterica serovar Typhimurium was used to induce intestinal fibrosis. A murine protease-specific CLIP-CHIP microarray analysis was employed to assess regulation of proteases and protease inhibitors. To confirm up- or downregulation during fibrosis, we performed quantitative real-time polymerase chain reaction (PCR) and immunohistochemical stainings in mouse tissue and tissue from patients with inflammatory bowel disease. In vitro infections were used to demonstrate a direct effect of bacterial infection in the regulation of proteases.ResultsMice develop severe and persistent intestinal fibrosis upon chronic infection with Salmonella enterica serovar Typhimurium, mimicking the pathology of human disease. Microarray analyses revealed 56 up- and 40 downregulated proteases and protease inhibitors in fibrotic cecal tissue. Various matrix metalloproteases, serine proteases, cysteine proteases, and protease inhibitors were regulated in the fibrotic tissue, 22 of which were confirmed by quantitative real-time PCR. Proteases demonstrated site-specific staining patterns in intestinal fibrotic tissue from mice and in tissue from human inflammatory bowel disease patients. Finally, we show in vitro that Salmonella infection directly induces protease expression in macrophages and epithelial cells but not in fibroblasts.ConclusionsIn summary, we show that chronic Salmonella infection regulates proteases and protease inhibitors during tissue fibrosis in vivo and in vitro, and therefore this model is well suited to investigating the role of proteases in intestinal fibrosis.


2016 ◽  
Vol 79 (2) ◽  
pp. 299-303 ◽  
Author(s):  
G. LEVENT ◽  
R. B. HARVEY ◽  
G. CIFTCIOGLU ◽  
R. C. BEIER ◽  
K. J. GENOVESE ◽  
...  

ABSTRACT Although thymol is bactericidal against many pathogens in vitro, its in vivo effectiveness against pathogens in the lower gastrointestinal tract is limited because of its rapid absorption in the proximal gut. Thymol-β-d-glucopyranoside (β-thymol), a conjugated form of thymol, can deliver thymol to the lower gastrointestinal tract and has shown antibacterial effects. In the present study, we examined the in vitro effects of β-thymol on Salmonella enterica serovar Typhimurium (ST) and Escherichia coli K88 (K88). We inoculated one-half strength Mueller-Hinton broth with 5.8 ± 0.09 log CFU/ml novobiocin- and naladixic acid–resistant (NN) ST (NVSL 95-1776) and 5.1 ± 0.09 log CFU ml−1 NN-resistant K88, with or without porcine feces (0.1% [wt/vol]) (fecal incubations). The resultant bacterial suspensions were distributed under N2 to triplicate sets of tubes to achieve initial concentrations of 0, 3, 6, and 12 mM for ST treatments and 0, 3, 12, and 30 mM for K88 treatments. Samples were incubated at 39°C and then plated onto NN-containing brilliant green agar and NN-containing MacConkey agar; ST and K88 CFU concentrations were determined via 10-fold dilutions, and viable cell counts were performed at 0, 6, and 24 h. No differences in ST CFU counts were observed in β-thymol–treated tubes without the added porcine feces (i.e., pure culture) at 6 or 24 h. However, in tubes that contained fecal incubations, ST CFU counts were reduced (P < 0.05) from controls at 6 h in tubes treated with 6 and 12 mM β-thymol, whereas in tubes treated with 3, 6, and 12 mM β-thymol the CFU counts were reduced (P < 0.05) at 24 h. No differences were observed in K88 CFU counts in pure culture or in fecal incubations at 6 h, but K88 CFU counts were reduced (P < 0.05) in both pure and fecal incubations at 24 h. The results from this study demonstrate that β-thymol, in the presence of fecal suspensions, has anti-Salmonella and anti–E. coli effects, suggesting a role of β-glycoside–hydrolyzing microbes for the release of bactericidal thymol from β-thymol.


Sign in / Sign up

Export Citation Format

Share Document