Changes in carbohydrates and ultrastructure in xylem ray cells ofPopulus in response to chilling

PROTOPLASMA ◽  
1987 ◽  
Vol 137 (1) ◽  
pp. 45-55 ◽  
Author(s):  
J. J. Sauter ◽  
Sabine Kloth
Keyword(s):  

2007 ◽  
Vol 21 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Moin A. Khan ◽  
Badruzzaman Siddiqui

Two tropical tree species viz. Alstonia venenata Br. and Alstonia neriifolia Don. (Apocynaceae) were investigated to detect size variation in different elements of the cambium and its derivative tissues. Although these two species were grown under identical climatic and edaphic conditions, fusiform initial dimensions and the elements derived from them were larger in A. venenata than in A. neriifolia. Ray initials are rectangular in A. venenata but isodiametric in A. neriifolia. An appreciable increase in length was observed in the phloem and xylem ray cells when compared to the mother cells. Maximum elongation was observed in xylem fibers during differentiation from the respective fusiform initials.



1954 ◽  
Vol 32 (3) ◽  
pp. 486-490 ◽  
Author(s):  
W. George Barker

Those xylem ray cells closely associated with the cambial zone will unite in proliferating with other cells recently derived from the cambium following the wounding of a basswood stem. However, ray cells remote from the cambium, although potentially meristematic, will fail to divide. Nonetheless these latter will grow out occasionally when the ray, exposed during the culturing operation, is closely connected with actively growing callus tissue. Parenchyma throughout the body of the secondary wood of the basswood has been shown to proliferate whenever a mass is exposed which is considerably larger in volume than a normal multiseriate ray. The healing of wounds in the linden best should be considered as a function of active, newly formed, cambial derivatives and not as a reaction dominated by any one tissue.



1966 ◽  
Vol 44 (7) ◽  
pp. 879-886 ◽  
Author(s):  
C. Glerum ◽  
J. L. Farrar

Seedlings of several conifer species were artificially subjected to freezing temperatures. Microscopic examination of sections, taken at intervals after the frost, revealed the way in which frost rings developed. Differentiating tracheids and xylem mother cells were killed by the frost, leaving a permanent band of underlignified and crumpled tracheids inside a band of dead cell tissue. Most of the cambial initials remained alive but developed abnormally into short irregular tracheids. Parenchyma cells proliferated mainly from the xylem ray cells. With subsequent growth, the growing stresses, which had become subnormal because of the collapse of killed cells, were restored. This was accompanied by the reestablishment of the cambium to its normal form.





2020 ◽  
Vol 9 (4) ◽  
pp. e31942727
Author(s):  
João Gabriel Missia da Silva ◽  
Pedro Nicó de Medeiros ◽  
Denise Ransolin Soranso ◽  
Vinicius Peixoto Tinti ◽  
José Tarcísio da Silva Oliveira ◽  
...  

The aim of this study was to evaluate the influence of anatomical characteristics on the adhesion performance of Vatairea sp., Paulownia sp., Aspidosperma populifolium and Tectona grandis wood. Specimens for anatomical, physical and mechanical analyzes were produced from tangentially oriented boards. The treatments were joint glued from pieces of the same anatomical orientation (radial and tangential), evaluated for shear strength and glue line failure. The Vatairea sp wood had the highest specific gravity (0.74 g cm-3) and the Paulownia sp (0.34 g cm-3) wood was smaller. Aspidosperma populifolium species showed the highest shear strength in the glue line in the tangential and radial faces. The anatomical variables with higher influence on the wood adhesion process were pith ray cells and especially fibers that exhibit the greatest correlation with the shear strength of the glue line.



1988 ◽  
Vol 3 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Ulla Westermark ◽  
Giorgio Capretti
Keyword(s):  


1977 ◽  
Vol 55 (20) ◽  
pp. 2559-2564 ◽  
Author(s):  
R. A. Gregory

The ratio of ray and ray cell initials to fusiform initials of the vascular cambium relative to radial growth rate as reflected in the secondary xylem was studied in stems of Acer saccharum Marsh. Ray initials increased in size as they aged, slowly when growth rate was low, rapidly when it was high, but there was little fluctuation in the number of rays per unit of tangential area; as the cambium increased in circumference, the older, larger rays diverged and new small rays arose in intervening areas, thus maintaining a uniform unit area population independent of growth rate. However, since ray size increased rapidly when growth rate was high, the unit area population of ray cells rose abruptly with accelerating growth rate: the relative volume of xylem ray tissue rose from 8.6 to 12.7% of the total xylem volume when annual ring width increased from 1 to 7 mm. When fast growth was not maintained, the unit area population of ray cells declined slowly as the large rays diverged.



IAWA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Roger Moya

Abstract The lianas in the family Sapindaceae are known for their unique secondary growth which differs from climbing species in other plant families in terms of their cambial variants. The present study deals with the stem anatomy of self-supporting and lianescent habit, development of phloem wedges, the ontogeny of cambial variants and structure of the secondary xylem in the stems of Serjania mexicana (L.) Willd. Thick stems (15–20 mm) were characterized by the presence of distinct phloem wedges and tangentially wide neo-formed cambial cylinders. As the stem diameter increases, there is a proportional increase in the number of phloem wedges and neo-formed vascular cylinders. The parenchymatous (pericyclic) cells external to phloem wedges that are located on the inner margin of the pericyclic fibres undergo dedifferentiation, become meristematic and form small segments of cambial cylinders. These cambia extend tangentially into wide and large segments of neoformations. Structurally, the secondary xylem and phloem of the neo-formed vascular cylinders remain similar to the derivatives produced by the regular vascular cambium. The secondary xylem is composed of vessels (wide and narrow), fibres, axial and ray parenchyma cells. The occurrence of perforated ray cells is a common feature in both regular and variant xylem.



1983 ◽  
Vol 5 (5) ◽  
pp. 161
Author(s):  
José Newton Cardoso Marchiori

This paper deals with the description of general, macroscopic and microscopic anatomy of Colletia paradoxa (Spreng.) Escalante, an aphyllous and xerophilous shrub from Rio Grande do Sul (Brazil). Pores of very small diameter, very short vessel elements, spiral thickenings and simple perforation plates in vessels, non sptate libriform fibers, scanty paratracheal axial paranchyma, and Heterogeneous II rays were observed in the wood.. Perforated cells are also common in rays. The presence of perforated ray cells and anatomical features of the vessel elements are discussed with respect to eco-physiological aspect of the plant and wood anatomy literature.



IAWA Journal ◽  
2006 ◽  
Vol 27 (4) ◽  
pp. 419-442 ◽  
Author(s):  
Fritz Hans Schweingruber

The xylem and phloem of Brassicaceae (116 and 82 species respectively) and the xylem of Resedaceae (8 species) from arid, subtropical and temperate regions in Western Europe and North America is described and analysed, compared with taxonomic classifications, and assigned to their ecological range. The xylem of different life forms (herbaceous plants, dwarf shrubs and shrubs) of both families consists of libriform fibres and short, narrow vessels that are 20–50 μm in diameter and have alternate vestured pits and simple perforations. The axial parenchyma is paratracheal and, in most species, the ray cells are exclusively upright or square. Very few Brassicaceae species have helical thickening on the vessel walls, and crystals in fibres. The xylem anatomy of Resedaceae is in general very similar to that of the Brassicaceae. Vestured pits occur only in one species of Resedaceae.Brassicaceae show clear ecological trends: annual rings are usually distinct, except in arid and subtropical lowland zones; semi-ring-porosity decreases from the alpine zone to the hill zone at lower altitude. Plants with numerous narrow vessels are mainly found in the alpine zone. Xylem without rays is mainly present in plants growing in the Alps, both at low and high altitudes. The reaction wood of the Brassicaceae consists primarily of thick-walled fibres, whereas that of the Resedaceae contains gelatinous fibres. The frequency of sclereids in Brassicaceae bark is an indicator of ecological differences: sclereids are rare in plants from the alpine zone and frequent in plants from all other ecotones.



Sign in / Sign up

Export Citation Format

Share Document