Concrete lining for steel ladle of the infusion (teapot) type

Refractories ◽  
1963 ◽  
Vol 4 (7-8) ◽  
pp. 392-395 ◽  
Author(s):  
P. N. D'yachkov ◽  
G. G. Zagainov ◽  
O. N. Zaikov ◽  
B. T. Fishel'
Keyword(s):  
Author(s):  
L. M. Akselrod ◽  
V. Garten

Quality of steel ladles lining to a big extent determine the economic efficiency of steel-making operation. Direct costs on the refractory lining of them can reach 30–50 % of the costs of lining of a steel-making complex. Experience of utilization of refractory materials of different composition considered with the purpose of efficiency increase of refractory materials application in the steel ladles lining under conditions of steel ladle treatment. Considerable abilities shown to make the lining of steel ladle walls and bottom by both carbon-containing and carbon-free refractory materials taking into account the economic aspect. Lining base of steel-making facilities — BOFs, EAFs and steel ladles — is composed by periclase-carbon (MgO–C) refractories. However those refractories have a high heat conductivity, that effects on the heat operation of steel ladles. When using MgO–С materials, vertical fractures can appear in the ladle walls lining as its residual thickness becomes small. Under definite conditions a working lining chipping takes place, problems appear with lining destruction in the pieces angles with cavities formation at the pieces joining. To level the MgO–С drawbacks, periclase-alumo-carbon (MgO–Al2O3–С) and alumo-periclase-carbon (Al2O3–MgO–С) refractory products are used. Al2O3–MgO–C refractories are widely used in most erosion-intensive lining zone — in the combatting place of steel ladle bottom lining. In Russia monolithic lining of steel ladle bottom is successfully displacing the lining by piece products, including alumo-periclase-carbon ones. Such a replace enables to decrease specific refractory consumption and specific costs of them. At present the technology of concrete application to bottom is implemented for ladles of BOF- and steel-making shops. A technology of concrete ladle walls and bottom is intensively implemented for 120–180-ton ladles. The concrete lining of steel ladles has the following advantages: high withstandability against impregnation by metal-slag melt; absence of metal carbonization by the carbon from ladle lining; increase of running duration of safety lining layer by 2–2.5 times; absence of necessity to use nest blocks in both steel outlet unit and for bottom blow-off lance; absence of cracks in lining, wash-outs in seams, angles and edges of pieces; decrease of gaseous hydrocarbon emissions(phenol, formaldehyde, benzapilene) during lining drying, heating-up and operation (only slag belt remains, where pieces have organic binders); saving of materials, working time and manpower while making and maintain the lining; decrease of specific consumption and specific costs for lining per 1t of steel. For lining of steel ladles of big volumes (more 250 t) alumo-periclase (alumo-spinel) products are widely used in China, Europe and Japan. For such a lining the thermo-mechanical tension, arising in monolithic ladle lining, has a less importance, including at its replacing with metal by using crane. It is easier for the products to compensate the ladle geometry change, resulted in metal shall geometry change in time. A positive influence of carbon-free lining, as well as a lining with low content of magnesium oxide, on metal quality noted, first of all for low- and ultralow carbon grades, and pipe low-alloyed steels.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1082
Author(s):  
Antonio Urióstegui-Hernández ◽  
Pedro Garnica-González ◽  
José Ángel Ramos-Banderas ◽  
Constantin Alberto Hernández-Bocanegra ◽  
Gildardo Solorio-Díaz

In this work, the fluid dynamic and thermal behavior of steel was analyzed during argon gas stirring in a 140-t refining ladle. The Eulerian multiphase mathematical model was used in conjunction with the discrete ordinates (DO) thermal radiation model in a steel-slag-argon system. The model was validated by particle image velocimetry (PIV) and the analysis of the opening of the oil layer in a physical scale model. The effect of Al2O3 and Mg-C as a refractory in the walls was studied, and the Ranz-Marshall and Tomiyama models were compared to determine the heat exchange coefficient. The results indicated that there were no significant differences between these heat exchange models; likewise, the radiation heat transfer model adequately simulated the thermal behavior according to plant measurements, finding a thermal homogenization time of the steel of 2.5 min for a gas flow of 0.45 Nm3·min−1. Finally, both types of refractory kept the temperature of the steel within the ranges recommended in the plant; however, the use of Al2O3 had better heat retention, which would favor refining operations.


Author(s):  
Masashi Nakayama ◽  
Haruo Sato ◽  
Yutaka Sugita ◽  
Seiji Ito ◽  
Masashi Minamide ◽  
...  

In Japan, any high level radioactive waste (HLW) repository is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash Contained Silicafume Cement), containing over 60 wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40 wt% OPC (Ordinary Portland Cement), 20 wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m3 of HFSC was used. The workability of HFSC shotcrete was confirmed in this experimental construction.


2021 ◽  
pp. 51-56
Author(s):  
V. N. Aptukov ◽  
V. V. Tarasov ◽  
V. S. Pestrikova ◽  
O. V. Ivanov

Scenarios of the component arrangement of batching plants in the system of a vertical mine shaft are discussed. The features of operation of batching plants in vertical shafts of potash mines are identified. The actual recorded damages generated in the lining of batching plants in the course of their longterm operation in potash mines are described. The geomechanical researches aimed to determine vertical convergence in batching rooms of mine shafts, as well as for monitoring of crack opening and displacements in sidewalls in the batching chambers are presented. The major results of the full-scale geomechanical observations are reported, and the main causes of fractures in concrete and reinforced concrete lining at junctures of shafts and batching rooms and shaft bins are identified. The set of the engineering solutions implemented for the protection of lining in batching facilities during construction of mine shafts is described, and its efficiency is evaluated. The mathematical modeling is carried out to estimate various negative impacts on deformation and fracture of concrete lining in shafts with regard to the time factor. From the modeling results, the dominant cause of concrete lining damage in batching chambers and in mine shaft is found. Based on the accomplished research results and actual long-term experience of operation of mine shafts, the most favorable factors are determined for the best design choices in construction and long-term maintenance-free operation of batching plants in potash mines of the Upper Kama Potash–Magnesium Salt Deposit.


Author(s):  
A. Bhansali ◽  
J. Godinez ◽  
X. Guo ◽  
H. Oltmann ◽  
E. Pretorius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document