scholarly journals Effect of insulin on carbon dioxide production in adipose tissue from immature rats

1967 ◽  
Vol 23 (1) ◽  
pp. 72-73 ◽  
Author(s):  
G. E. Bacon
1985 ◽  
Vol 63 (9) ◽  
pp. 1145-1150 ◽  
Author(s):  
M. Desautels ◽  
R. A. Dulos ◽  
J. A. Thornhill

The ability of dystrophic hamsters to maintain their body temperature despite abnormal muscle and brown adipose tissue, two organs involved in thermoregulation, was evaluated. Dystrophic hamsters (CHF 146) between the ages of 30 and 160 days kept at 21 °C had core (rectal) temperatures (TR) that were 0.5–1.5 °C lower than Golden Syrian controls. The reduced core temperatures of dystrophic hamsters were unlikely the result of an incapacity to generate heat since the dystrophic hamsters were able to maintain their TRs during 3 h of acute cold stress (4 °C) and to adapt to prolonged cold exposure. However, TRs of cold-acclimated dystrophic hamsters were still 1 °C below TRs of cold-acclimated control animals. By contrast, increasing the ambient temperature raised TRs of both normal and dystrophic hamsters. When kept at 32 °C overnight, the TRs of dystrophic hamsters remained significantly below those of control animals. When heat-exposed dystrophic hamsters were returned to 21 °C, their TRs returned to values significantly lower than those of control hamsters. Thus, dystrophic hamsters showed a capacity to thermoregulate, like control hamsters, but appeared to do so at a lower temperature. The reduced core temperatures of dystrophic hamsters kept at 21 °C cannot be explained by a reduction in metabolic activity since newborns and 30- and 140-day-old dystrophic hamsters had rates of oxygen consumption [Formula: see text] and carbon dioxide production [Formula: see text] that were similar to those of controls. These results suggest that the thermoregulatory set point may be altered in dystrophic hamsters.


1958 ◽  
Vol 36 (1) ◽  
pp. 237-241
Author(s):  
William F. Perry

The in vitro incorporation of 1-C14 and 2-C14 acetate into fatty acids and carbon dioxide by liver and adipose tissue was studied in rats fasted at 5 °C. for 24 hours. Compared with fed rats at room temperature, there was a marked decrease in the incorporation of the acetate carbons into fatty acids and carbon dioxide by liver tissue. A pronounced decrease in acetate incorporation into fatty acid was also noted with adipose tissue from these same animals, but only a slight decrease in incorporation into carbon dioxide. Addition of glucose to the incubation medium caused increases in fatty acid formation by liver and adipose tissue from both normal and fasted animals, but glucose supplementation, while increasing the incorporation of acetate into carbon dioxide by liver tissue from cold fasted rats, did not affect carbon dioxide production by liver tissue from normal animals. Incorporation of acetate into carbon dioxide by adipose tissue was unaffected by glucose supplementation with tissue from both normal and cold fasted rats.


1958 ◽  
Vol 36 (2) ◽  
pp. 237-241 ◽  
Author(s):  
William F. Perry

The in vitro incorporation of 1-C14 and 2-C14 acetate into fatty acids and carbon dioxide by liver and adipose tissue was studied in rats fasted at 5 °C. for 24 hours. Compared with fed rats at room temperature, there was a marked decrease in the incorporation of the acetate carbons into fatty acids and carbon dioxide by liver tissue. A pronounced decrease in acetate incorporation into fatty acid was also noted with adipose tissue from these same animals, but only a slight decrease in incorporation into carbon dioxide. Addition of glucose to the incubation medium caused increases in fatty acid formation by liver and adipose tissue from both normal and fasted animals, but glucose supplementation, while increasing the incorporation of acetate into carbon dioxide by liver tissue from cold fasted rats, did not affect carbon dioxide production by liver tissue from normal animals. Incorporation of acetate into carbon dioxide by adipose tissue was unaffected by glucose supplementation with tissue from both normal and cold fasted rats.


1992 ◽  
Vol 70 (3) ◽  
pp. 408-411 ◽  
Author(s):  
Peter B. Frappell ◽  
Andrea Dotta ◽  
Jacopo P. Mortola

Aerobic metabolism (oxygen consumption, [Formula: see text], and carbon dioxide production, [Formula: see text]) has been measured in newborn rats at 2 days of age during normoxia, 30 min of hyperoxia (100% O2) and an additional 30 min of recovery in normoxia at ambient temperatures of 35 °C (thermoneutrality) or 30 °C. In normoxia, at 30 °C [Formula: see text] was higher than at 35 °C. With hyperoxia, [Formula: see text] increased in all cases, but more so at 30 °C (+20%) than at 35 °C (+9%). Upon return to normoxia, metabolism readily returned to the prehyperoxic value. The results support the concept that the normoxic metabolic rate of the newborn can be limited by the availability of oxygen. At temperatures below thermoneutrality the higher metabolic needs aggravate the limitation in oxygen availability, and the positive effects of hyperoxia on [Formula: see text] are therefore more apparent.Key words: neonatal respiration, oxygen consumption, thermoregulation.


1973 ◽  
Vol 51 (4) ◽  
pp. 701-710 ◽  
Author(s):  
Roger S. Smith

The long-term measurement of aerobic fungal respiration, both on an agar medium and on wood blocks, was possible using a gas-chromatographic technique for the detection of the carbon dioxide. This method was fully automated to analyze gas samples sequentially from eight or more growth chambers, after variable but determined time periods. It provided a precise quantitative measure of the respired carbon dioxide, presented both in the form of punched computer tape and normal printed teleprinter output. This apparatus worked continuously for several years without serious breakdown.The fungi Lentinus lepideus, Lenzites trabea, Poria monticola, and several strains of Coniophora puteana all showed a rhythm in their respiration which was not controlled by temperature or light. The magnitude and frequency of the rhythmical peaks in carbon dioxide production varied between fungi and, although there was considerable variation between different isolates of the same species, the separation of these species of fungi based on their different patterns of respiration was possible.


Sign in / Sign up

Export Citation Format

Share Document