Reliability of the mechanomyogram detected with an accelerometer during voluntary contractions

2003 ◽  
Vol 41 (2) ◽  
pp. 198-202 ◽  
Author(s):  
M. Watakabe ◽  
K. Mita ◽  
K. Akataki ◽  
K. Ito
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dorian Glories ◽  
Mathias Soulhol ◽  
David Amarantini ◽  
Julien Duclay

AbstractDuring voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time–frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.


2021 ◽  
pp. 1-11
Author(s):  
Kale Mehmet

BACKGROUND: There is insufficient knowledge about the rate of force development (RFD) characteristics over both single and multiple joint movements and the electromechanical delay (EMD) values obtained in athletes and untrained individuals. OBJECTIVE: To compare single and multiple joint functions and the neural drive of trained athletes and untrained individuals. METHODS: Eight trained athletes and 10 untrained individuals voluntarily participated to the study. The neuromuscular performance was assessed during explosive and maximum voluntary isometric contractions during leg press and knee extension related to single and multiple joint. Explosive force and surface electromyography of eight superficial lower limb muscles were measured in five 50-ms time windows from their onset, and normalized to peak force and electromyography activity at maximum voluntary force, respectively. The EMD was determined from explosive voluntary contractions (EVC’s). RESULTS: The results showed that there were significant differences in absolute forces during knee extension maximum voluntary force and EVC’s (p< 0.01) while trained athletes achieved greater relative forces than untrained individuals of EVC at all five time points (p< 0.05). CONCLUSIONS: The differences in explosive performance between trained athletes and untrained individuals in both movements may be explained by different levels of muscle activation within groups, attributed to variation in biarticular muscle function over both activities.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Kadlec ◽  
Matthew J. Jordan ◽  
Leanne Snyder ◽  
Jacqueline Alderson ◽  
Sophia Nimphius

Abstract Purpose To examine the test re-test reliability of isometric maximal voluntary contractions (MVC) of hip adduction (ADDISO), hip abduction (ABDISO), and multijoint leg extension (SQUATISO) in sub-elite female Australian footballers. Methods Data were collected from 24 sub-elite female Australian footballers (age 22.6 ± 4.5 years; height 169.4 ± 5.5 cm; body mass 66.6 ± 8.0 kg; 4.5 ± 4.4 years sport-specific training; 2.5 ± 2.0 years unstructured resistance training) from the same club on two non-consecutive days. Participants performed three isometric MVCs of ADDISO, ABDISO, and SQUATISO. The SQUATISO was performed at 140° knee flexion with a vertical trunk position and ADDISO and ABDISO measures were performed in a supine position at 60° of knee flexion and 60° hip flexion. Reliability was assessed using paired t tests and the intraclass correlation coefficient (ICC) with 95% confidence intervals (CI), typical error (TE), and coefficient of variation (CV%) with 95% CI. Results SQUATISO peak force (ICC .95; CV% 4.1), ABDISO for left, right, and sum (ICC .90–.92; CV% 5.0–5.7), and ADDISO for left, right, and sum (ICC .86–.91; CV% 6.2–6.9) were deemed acceptably reliable based on predetermined criteria (ICC ≥ .8 and CV% ≤ 10). Conclusion SQUATISO, ABDISO, and ADDISO tests demonstrated acceptable reliability for the assessment of peak force in sub-elite female Australian footballers, suggesting these assessments are suitable for muscle strength testing and monitoring adaptations to training.


2020 ◽  
pp. 1-13
Author(s):  
Luigi Catino ◽  
Chiara Malloggi ◽  
Stefano Scarano ◽  
Valeria Cerina ◽  
Viviana Rota ◽  
...  

BACKGROUND: A method of measurement of voluntary activation (VA, percent of full muscle recruitment) during isometric and isokinetic concentric contractions of the quadriceps femoris (QF) at 60∘/s and 120∘/s was previously validated. OBJECTIVE: This study aimed to quantify the test-retest minimal real difference (MRD) of VA during isometric (ISOM) and isokinetic concentric contractions of QF (100∘/s, ISOK) in a sample of healthy individuals. METHODS: VA was measured through the interpolated twitch technique. Pairs of electrical stimuli were delivered to the QF at 40∘ of knee flexion during maximal voluntary contractions. Twenty-five healthy participants (20–38 years, 12 women, 13 men) completed two testing sessions with a 14-day interval. VA values were linearized through logit transformation (VAl). The MRD was estimated from intraclass correlation coefficients (model 2.1). RESULTS: The VA (median, range) was 84.20% (38.2–99.9%) in ISOM and 94.22% (33.8-100%) in ISOK. MRD was 0.78 and 1.12 logit for ISOM and ISOK, respectively. As an example, in terms of percent VA these values correspond to a change from 76% to 95% and from 79% to 98% in ISOM and in ISOK, respectively. CONCLUSIONS: The provided MRD values allow to detect significant individual changes in VA, as expected after training and rehabilitation programs.


2014 ◽  
Vol 39 (12) ◽  
pp. 1338-1344 ◽  
Author(s):  
Israel Halperin ◽  
David Copithorne ◽  
David G. Behm

Nonlocal muscle fatigue occurs when fatiguing 1 muscle alters performance of another rested muscle. The purpose of the study was to investigate if fatiguing 2 separate muscles would affect the same rested muscle, and if fatiguing the same muscle would affect 2 separate muscles. Twenty-one trained males participated in 2 studies (n = 11; n = 10). Subjects performed 2 pre-test maximum voluntary contractions (MVCs) with the nondominant knee extensors. Thereafter they performed two 100-s MVCs with their dominant knee extensors, elbow flexors, or rested. Between and after the sets, a single MVC with the nondominant rested knee extensors was performed. Subsequently, 12 nondominant knee extensors repeated MVCs were completed. Force, quadriceps voluntary activation (VA), and electromyography (EMG) were measured. The same protocol was employed in study 2 except the nondominant elbow-flexors were tested. Study 1: Compared with control conditions, a significant decrease in nondominant knee extensors force, EMG, and VA was found under both fatiguing conditions (P ≤ 0.05; effect size (ES) = 0.91–1.15; 2%–8%). Additionally, decrements in all variables were found from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.82–2.40; 9%–20%). Study 2: No differences were found between conditions for all variables (P ≥ 0.33; ES ≤ 0.2; ≤3.0%). However, all variables decreased from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.4–3.0; 7.2%–19.7%). Whereas the rested knee extensors demonstrated nonlocal effects regardless of the muscle being fatigued, the elbow-flexors remained unaffected. This suggests that nonlocal effects are muscle specific, which may hold functional implications for training and performance.


2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 264-282
Author(s):  
Rihab Borji ◽  
Firas Zghal ◽  
Nidhal Zarrouk ◽  
Sonia Sahli ◽  
Haithem Rebai

The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.


2010 ◽  
Vol 108 (6) ◽  
pp. 1595-1604 ◽  
Author(s):  
Ramu Perumal ◽  
Anthony S. Wexler ◽  
Trisha M. Kesar ◽  
Angela Jancosko ◽  
Yocheved Laufer ◽  
...  

Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis.


2003 ◽  
Vol 95 (2) ◽  
pp. 829-837 ◽  
Author(s):  
Taija Finni ◽  
John A. Hodgson ◽  
Alex M. Lai ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


Sign in / Sign up

Export Citation Format

Share Document