Analytical theory of regenerative heat transfer and study of its thermodynamic efficiency

2000 ◽  
Vol 73 (2) ◽  
pp. 232-237
Author(s):  
B. N. Okunev ◽  
M. S. Safonov
2022 ◽  
Vol 2150 (1) ◽  
pp. 012011
Author(s):  
P A Shchinnikov ◽  
I S Sadkin ◽  
A P Shchinnikov ◽  
N F Cheganova ◽  
N I Vorogushina

Abstract This paper considers the main CO2 power cycle configurations based on the Allam and JIHT cycles. In particular, the authors of the article have proposed new configurations of the power cycle. The efficiency of these cycles is studied as a function of the initial temperature and pressure of the working fluid. The thermodynamic efficiency can reach 65–66%. It is shown that the presence of regenerative heat transfer and the properties of supercritical carbon dioxide have a great influence on the thermal efficiency.


Author(s):  
Christopher B. Churchill ◽  
John Shaw

Two thirds of the energy generated in the United States is currently lost as waste heat, representing a potentially vast source of green energy. Low Carnot efficiency is an inherent limitation of extracting energy from low-grade thermal sources (temperature gradients near or below 100C), and SMA heat engines could be useful for those applications where low weight and packaging are overriding considerations. Although many shape memory alloy (SMA) heat engines have been proposed to harvest this energy, and a few have been built and demonstrated in past decades, they have not been commercially successful. Some of the barriers to commercialization include their perceived low thermodynamic efficiency, high material cost, low material durability, complexities when using fluid baths, and the lack of robust constitutive models and design tools. Recent advances, however, in SMA longevity, reductions in materials costs (as production volumes have increased), and a better understanding of SMA behavior have stimulated new research on SMA heat engines. The Lightweight Thermal Energy Recovery System (LighTERS) is an ongoing ARPA-E funded collaboration between General Motors, HRL Laboratories, Dynalloy, Inc., and the University of Michigan. In the LighTERS engine (a refinement of the Dr. Johnson engine), a closed loop SMA spring element generates mechanical power by pulling itself between alternating hot and cold air regions. The first known thermo-mechanical model for this type of heat engine was developed in three stages. First, the constitutive and heat transfer relationships of an SMA spring form were characterized experimentally. Second, those relationships were used as inputs in a steady-state model of the heat engine, including both convective heat transfer and large-deformation mechanics. Finally, the model was validated successfully against measurements of a experimental heat engine built at HRL Labs.


Author(s):  
Li Haibo ◽  
Chunwei Gu

Conjugate heat transfer is a key feature of modern gas turbine, as cooling technology is widely applied to improve the turbine inlet temperature for high efficiency. Impact of conjugate heat transfer on heat loads and thermodynamic efficiency is a key issue in gas turbine design. This paper presented a through flow calculation method to predict the impact of heat transfer on the design process of a convective cooled turbine. A cooling model was applied in the through flow calculations to predict the coolant requirements, as well as a one-dimensional mixing model to evaluate some key parameters such as pressure losses, deviation angles and velocity triangles because of the injection cooling air. Numerical simulations were performed for verification of the method and investigation on conjugate heat transfer within the blades. By comparing these two calculations, it is shown that the through flow calculation method is a useful tool for the blade design of convective cooled turbines because of its simplicity and flexibility.


Author(s):  
Yaroslav Dvoinos ◽  
Pavlo Yevziutin

Regenerative heat exchangers have disadvantages such as low heat transfer coefficient from the nozzle to the gas and high hydraulic resistance due to the design of the nozzles. Wire-mesh nozzles can eliminate these shortcomings of regenerators. Wire-mesh nozzles have low hydraulic resistance and large heat transfer surface. The process of heat and mass transfer in a regenerative heat exchanger is considered. A series of numerical simulation experiments was performed. Theoretically, the optimal configuration of the nozzle was calculated: a plain weave mesh with a wire diameter of 0.4 mm, a weaving step of 2 mm, and a step of placing nets of 1 mm. The operational modes for the regenerator are considered, taking into account the period for drying the nozzle from moisture and the maximum mass of water that can hold the nozzle without the formation of drops. Given the condensation of moisture on the nozzle, the following assumptions are made: There is no temperature and concentration inhomogeneity in the cross section of the regenerator channel; The effect of thermal conductivity in the axial direction in contact between the nozzle elements on the temperature profile of the nozzle is insignificant; The time over which the regenerator is operated between the nozzle drying periods is quite short, and the thickness of the condensate layer does not affect the hydrodynamic mode of the heat regeneration process and the value of the heat transfer coefficient. The duration of the cooling and drying period depends on the humidity of the inlet air and the area of the nozzle. This is due to the need to prevent the accumulation of moisture in the device, which can lead to the reproduction of harmful bacteria and contamination of the nozzle. In the SolidWorks Flow Simulation application, simulation experiments were performed for a regenerator model accounting for the influence of compressed air motion resulting from grouped location of the nozzle elements, and the results are shown in the figures. Comparison of the results from analytical calculations and simulation experiments showed the efficiency of the mathematical model and the possibility of its use in the design calculation of regenerators. Correlation dependences have been established to determine the heat transfer coefficient and hydraulic resistance depending on the hydrodynamic conditions. The mathematical and physical model taking into account the condensation of moisture on the nozzle has been specified. Calculations have been performed for the optimal nozzle made in the form of a plain weave mesh with a wire diameter of 0.4 mm, a weaving step of 2 mm, and a step of placing nets of 1 mm.


Author(s):  
Tiberiu Preda ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Kamiel S. Gabriel

Currently, increase in thermodynamic efficiency of water-cooled Nuclear Power Plants (NPPs) can only be achieved by raising the coolant’s operating conditions above the supercritical point. The critical point of water is 22.06 MPa and 373.95°C, making supercritical water research very power-intensive and expensive. CO2 behaves in a similar manner once in the supercritical state, but at significantly lower pressure and temperature, since critical point of CO2 is 7.37 MPa and 30.98°C. The applications of supercritical CO2 research range from using it as a modelling fluid, to supercritical turbine applications in Liquid Metal Fast Breeder Reactors (LMFBRs), and use in a supercritical Brayton cycle. Therefore, it is of prime importance to model its behaviour as accurately as possible. For this purpose, experimental data of Koppel (1960), He (2005), Kim (2005) and Bae (2007) for CO2 were analyzed, and a new correlation was developed. The dataset consists of 1409 wall temperature points with pressures ranging from 7.58 to 9.58 MPa, mass fluxes from 419 to 1200 kg/m2s, and heat fluxes from 20 to 130 kW/m2. All runs take place in bare tubes of inner diameters from 0.948 to 9.00 mm in both vertical and horizontal configurations. The proposed correlation takes a wall-temperature approach to predicting the Nusselt number. This paper compares the new correlation with other work which has been done at the University of Ontario Institute of Technology by Mokry et al. (2009), as well as with correlations by Swenson et al. (1965) and Dittus-Boelter (1930). It was found that the new correlation has an overall RMS error of 13% for Heat Transfer Coefficient (HTC) values and 5% for calculated wall temperature values. The correlation can be used as a conservative approach to predict wall temperature values in Supercritical Water Reactor (SCWR) preliminary calculations, to predict heat transfer in secondary-loop turbine/ heat exchanger applications, as with the LMFBR, and to help validate scaling parameters used for water and other coolants.


Sign in / Sign up

Export Citation Format

Share Document