A field experiment testing for correspondence between trace elements in otoliths and the environment and for evidence of adaptation to prior habitats

Estuaries ◽  
2005 ◽  
Vol 28 (6) ◽  
pp. 974-981 ◽  
Author(s):  
Graham E. Forrester
2021 ◽  
Vol 290 ◽  
pp. 118025
Author(s):  
Paloma Campos ◽  
Heike Knicker ◽  
Ana Z. Miller ◽  
Marta Velasco-Molina ◽  
José María De la Rosa

1962 ◽  
Vol 42 (1) ◽  
pp. 46-52 ◽  
Author(s):  
G. G. Smeltzer ◽  
W. M. Langille ◽  
K. S. MacLean

In a field experiment, conducted on four different soil types, trace elements cobalt, zinc, manganese, copper, sodium and molybdenum were applied by sprayer to a grass-legume sward in late September in both 1955 and 1956. Treatment differences were evaluated in terms of total dry matter production and by the chemical composition of the plant tissue. The elements applied were detectable in plant tissue, but herbage yields were not affected. Apparently the trace elements in these different soil types were in the range of sufficiency for maximum herbage production.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Hamza Zine ◽  
Sara Elgadi ◽  
Rachid Hakkou ◽  
Eleni G. Papazoglou ◽  
Laila Midhat ◽  
...  

The management of mine waste has become an urgent issue, especially in semi-arid environments. In this context, and with an aim to inhibit the oxidation of the sulfide tailings of the abandoned mine of Kettara in Morocco, a store-and-release (SR) cover made of phosphate mine waste (PW) was implemented. In order to guarantee its long-term performance, phytostabilization by local wild plant species is currently the most effective and sustainable solution. This study aimed to assess the growth performance and phytostabilization efficiency of five local wild plant species to grow on the SR cover made of PW. A field experiment was conducted for two growing seasons (2018 and 2019), without amendments and with the minimum of human care. PW and the aboveground and belowground parts of the studied plant species were collected and analyzed for As, Cd, Cu, Ni, and Zn. The bioconcentration factor (BCF) and translocation factor (TF) were also calculated. Despite the hostile conditions of the mining environment, the five plant species showed promising growth performances as follows: Atriplex semibaccata > Vicia sativa > Launaea arborescens > Peganum harmala > Asparagus horridus. The five plants showed high accumulation capacity of the trace elements, with the highest concentrations in belowground tissue. Principal component analysis distinguished A. semibaccata as having a high concentration of Cu and As, while Asparagus horridus had higher concentrations of Cd and Zn. In contrast, P. harmala, V. sativa, and L. arborescens demonstrated affinity regarding Ni. According to the BCF (<1) and TF (<1), these plant species could be used as effective phytostabilizers of the studied trace elements. The present study showed that local wild plant species have a great potential for the phytostabilization of PW, and could ensure the long-term efficiency of SR cover.


2019 ◽  
Vol 27 (5) ◽  
pp. 5367-5386 ◽  
Author(s):  
Aurélia Marcelline Michaud ◽  
Philippe Cambier ◽  
Valérie Sappin-Didier ◽  
Valentin Deltreil ◽  
Vincent Mercier ◽  
...  

AbstractOrganic waste products (OWP) application to crop lands makes possible nutrients recycling. However, it can result in long-term accumulation of trace elements (TE) in soils. The present study aimed at (i) assessing the impact of regular applications of urban composts and manure on the TE contents of topsoils and crops in a long-term field experiment, (ii) comparing the TE mass balances with the stock variations of TE in soils, and (iii) proposing a prospective evaluation of this practice, based on estimated soil safe threshold values and simulations of soil TE accumulation for 100 years. In the long-term field experiment, physico-chemical properties and TE contents (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been measured in OWP, soils, plants and leaching waters for the period 1998–2015, and used for mass balance calculations and long-term simulations of TE accumulations. The composts of green wastes and sludge (GWS) and of municipal solid waste (MSW) were the OWP with the largest TE contents, while the farmyard manure tended to have the lowest. Repeated application of OWP led to significant accumulation of Zn and Cu in the topsoil layer (not for Cr, Cd, Hg, Ni, Pb), especially with GWS, without overpassing calculated protective threshold values. No effect of repeated application of OWP has been observed on TE contents in grains (wheat, maize, barley). The positive mass balance has been dominated by the input flux of TE through OWP and resulted in the observed increases of soil stocks for Cu and Zn. Prospective simulation of soil content evolution until 2100 showed that soil content reached 0.4 mg Cd kg−1 soil (GWS, MSW), 38 mg Cu kg−1 soil (GWS) and 109 mg Zn kg−1 soil (GWS), which remained lower than protective threshold values.


Author(s):  
O.T. Woo ◽  
G.J.C. Carpenter

To study the influence of trace elements on the corrosion and hydrogen ingress in Zr-2.5 Nb pressure tube material, buttons of this alloy containing up to 0.83 at% Fe were made by arc-melting. The buttons were then annealed at 973 K for three days, furnace cooled, followed by ≈80% cold-rolling. The microstructure of cold-worked Zr-2.5 at% Nb-0.83 at% Fe (Fig. 1) contained both β-Zr and intermetallic precipitates in the α-Zr grains. The particles were 0.1 to 0.7 μm in size, with shapes ranging from spherical to ellipsoidal and often contained faults. β-Zr appeared either roughly spherical or as irregular elongated patches, often extending to several micrometres.The composition of the intermetallic particles seen in Fig. 1 was determined using Van Cappellen’s extrapolation technique for energy dispersive X-ray analysis of thin metal foils. The method was employed to avoid corrections for absorption and fluorescence via the Cliff-Lorimer equation: CA/CB = kAB · IA/IB, where CA and CB are the concentrations by weight of the elements A and B, and IA and IB are the X-ray intensities; kAB is a proportionality factor.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


1979 ◽  
Vol 7 (6) ◽  
pp. 1330-1331
Author(s):  
E. D. WILLS

2004 ◽  
Vol 74 (4) ◽  
pp. 247-251 ◽  
Author(s):  
Lombardi-Boccia ◽  
Lanzi ◽  
Lucarini ◽  
Di Lullo

This study was undertaken to estimate the contribution of meat and meat products consumption to the daily intakes of trace elements (Fe, Zn, Cu, Se), heme iron, and selected B vitamins (thiamine, riboflavin, niacin) in Italy. Meat and meat products were selected on the basis of their consumption frequency reported by the most recent nationwide dietary individual survey carried out in Italy (INN-CA study). The daily intakes of total iron and heme iron were 1.65 and 1.13 mg/person/day. Zinc intake was 3.65 mg/person/day. Beef made the main contribution to iron, heme iron, and zinc daily intakes. Copper daily intake was 107.3 mug/person/day, with meat products provided the highest contribution (40 mug/person/day). Daily intake of selenium (7.14 mug/person/day) was provided mainly by poultry consumption. Thiamine intake was 228 mug/person/day, and meat products were the main source (110 mug/person/day). Riboflavin intake was 136 mug/person/day, with both beef and meat products as the main contributors (40 mug/person/day). Niacin intake was 7.53 mg/person/day, and poultry was the main source (2.28 mg/person/day). Meat and meat products were a valuable source of micronutrients, supplying 47, 48, and 24% of zinc, niacin, and thiamin daily requirements, respectively, and over 10% of iron, copper, selenium, and riboflavin daily average requirement values of the italian RDAs calculated for the population involved in the survey (INN-CA study).


Sign in / Sign up

Export Citation Format

Share Document