Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase

2005 ◽  
Vol 30 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Rachana Tripathi ◽  
K. Seetharama Sastry ◽  
Satya Keerthi Kota ◽  
Usha K. Srinivas
2006 ◽  
Vol 142 (4) ◽  
pp. 1664-1682 ◽  
Author(s):  
Seok Keun Cho ◽  
Hoo Sun Chung ◽  
Moon Young Ryu ◽  
Mi Jin Park ◽  
Myeong Min Lee ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33495 ◽  
Author(s):  
Xiaohong Zhou ◽  
Sean L. Evans ◽  
Xue Han ◽  
Yayan Liu ◽  
Xiao-Fang Yu

Author(s):  
Hantao Wang ◽  
Junjie Xing ◽  
Wei Wang ◽  
Guifen Lv ◽  
Haiyan He ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.


2004 ◽  
Vol 167 (6) ◽  
pp. 1075-1085 ◽  
Author(s):  
J. Michael Younger ◽  
Hong-Yu Ren ◽  
Liling Chen ◽  
Chun-Yang Fan ◽  
Andrea Fields ◽  
...  

CFTRΔF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRΔF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTRΔF508. Nonubiquitinated CFTRΔF508 accumulates in a kinetically trapped, but folding competent conformation, that is maintained in a soluble state by cytosolic Hsc70. Ubiquitination of Hsc70-bound CFTRΔF508 requires CHIP, a U box containing cytosolic cochaperone. CHIP is demonstrated to function as a scaffold that nucleates the formation of a multisubunit E3 ubiquitin ligase whose reconstituted activity toward CFTR is dependent upon Hdj2, Hsc70, and the E2 UbcH5a. Inactivation of the Hsc70–CHIP E3 leads CFTRΔF508 to accumulate in a nonaggregated state, which upon lowering of cell growth temperatures, can fold and reach the cell surface. Inhibition of CFTRΔF508 ubiquitination can increase its cell surface expression and may provide an approach to treat CF.


2009 ◽  
Vol 378 (3) ◽  
pp. 498-502 ◽  
Author(s):  
Nikolaos G. Kandias ◽  
Christos T. Chasapis ◽  
Detlef Bentrop ◽  
Vasso Episkopou ◽  
Georgios A. Spyroulias

2013 ◽  
Vol 116 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Liuji Wu ◽  
Xiuli Hu ◽  
Xiao Chen ◽  
Liancheng Wu ◽  
Yanhui Chen

2017 ◽  
Vol 292 (22) ◽  
pp. 9104-9116 ◽  
Author(s):  
Jiwon Hwang ◽  
Christopher P. Walczak ◽  
Thomas A. Shaler ◽  
James A. Olzmann ◽  
Lichao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document