Human circadian rhythm synchronization by social timers: The role of motivation: IV. Individual features of the free-running 24-hour sleep-wake cycle under simulated conditions of vital activity

2000 ◽  
Vol 26 (1) ◽  
pp. 41-47 ◽  
Author(s):  
A. A. Sorokin ◽  
A. L. Maksimov ◽  
J. Jermain
2021 ◽  
Author(s):  
Viacheslav V. Krylov ◽  
Evgeny I. Izvekov ◽  
Vera V. Pavlova ◽  
Natalia A. Pankova ◽  
Elena A. Osipova

AbstractThe locomotor activity of zebrafish (Danio rerio) has a pronounced, well-studied circadian rhythm. Under constant illumination, the period of free-running locomotor activity in this species usually becomes less than 24 hours. To evaluate the entraining capabilities of slow magnetic variations, zebrafish locomotor activity was evaluated at constant illumination and fluctuating magnetic field with a period of 26.8 hours. Lomb-Scargle periodogram revealed significant free-running rhythms of locomotor activity and related behavioral endpoints with a period close to 27 hours. Obtained results reveal the potential of slow magnetic fluctuations for entrainment of the circadian rhythms in zebrafish. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.


Author(s):  
V. Krylov ◽  
E. Izvekov ◽  
V. Pavlova ◽  
N. Pankova ◽  
E. Osipova

The locomotor activity of zebrafish (Danio rerio) has a pronounced, well-studied circadian rhythm. Under constant illumination, the period of free-running locomotor activity in this species usually becomes less than 24 hours. To evaluate the entraining capabilities of slow magnetic variations, zebrafish locomotor activity was evaluated at constant illumination and fluctuating magnetic field with a period of 26.8 hours. Lomb-Scargle periodogram revealed significant free-running rhythms of locomotor activity and related behavioral endpoints with a period close to 27 hours. Obtained results reveal the potential of slow magnetic fluctuations for entrainment of the circadian rhythms in zebrafish. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.


2021 ◽  
Vol 69 (6) ◽  
pp. 99-105
Author(s):  
Inna I. Evsyukova ◽  
Eduard K. Ailamazyan

This review presents literature data on the role of melatonin in regulating the composition of the microbiota and on the variety of functions it performs that are synchronized with the circadian rhythm of vital activity of the body. During pregnancy, the restructuring of the intestinal, vaginal and placental microbiota is provided by a significant increase in the production of epiphyseal melatonin, which contributes to the creation of optimal conditions for the development of microflora in early ontogenesis. In the absence of circadian production of melatonin, a pregnant woman retains dysbiosis, which determines the transmission of altered intestinal microflora to the fetus and subsequent metabolic dysregulation in the childs body.


Author(s):  
C. A. Mastronardi ◽  
A. Walczewska ◽  
W. H. Yu ◽  
S. Karanth ◽  
A. F. Parlow ◽  
...  
Keyword(s):  

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 70
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Martha Villagran ◽  
Robert Zdanowski ◽  
Jacek Z. Kubiak ◽  
...  

The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.


1984 ◽  
Vol 247 (2) ◽  
pp. R250-R256
Author(s):  
H. G. Scholubbers ◽  
W. Taylor ◽  
L. Rensing

Membrane properties of whole cells of Gonyaulax polyedra were measured by fluorescence polarization. Circadian changes of fluorescence polarization exist in exponentially growing cultures. They show an amplitude larger than that of stationary cultures, indicating that a part of the change is due to or amplified by an ongoing cell cycle. Measurements of parameters of the circadian glow rhythm were analyzed for possible correlation with the membrane data. Considerable differences (Q10 = 2.5-3.0) in fluorescence polarization were found in cultures kept at different temperatures ranging from 15 to 27.5 degrees C. The free-running period length at different temperatures, on the other hand, differed only slightly (Q10 = 0.9-1.1). Stationary cultures showed higher fluorescence polarization compared with growing cultures, whereas the free-running period lengths did not differ in cultures of various densities and growth rates. Temperature steps of different sign changed the fluorescence polarization slightly in different directions. The phase shift of 4-h pulses (-5, -9, +7 degrees C) resulted in maximal phase advances of 4, 6, and 2 h, respectively. The phasing of the phase-response curves was identical in all these experiments, a finding not to be expected if the pulses act via the measured membrane properties. Pulses of drugs that change the fluorescence polarization (e.g., chlorpromazine and lidocaine) did not or only slightly phase-shift the circadian rhythm.


2021 ◽  
Vol 19 (2) ◽  
pp. 34-38
Author(s):  
A. S. SAMOYLOV ◽  
◽  
N. V. RYLOVA ◽  
A. V. ZHOLINSKIY ◽  
I. V. BOLSHAKOV ◽  
...  

The article presents data from the Russian and foreign literature of the properties of melatonin, its role in the vital activity of the body and the regulation of circadian rhythms. The features of using the drug in desynchronosis, the optimal dosage and time of administration, as well as the possibility of its use in combination with non-pharmacological treatment methods are discussed. These methods include dosed light exposure and exercise. Additionally, new studies are considered, indicating the beneficial effect of melatonin and its agonists on the immune, cardiovascular, endocrine and nervous systems. Based on the collected data, it is asserted that melatonin can significantly accelerate the process of adaptation to a new time zone without the development of side effects. Therefore, this drug is the most effective and safe treatment for desynchronosis. It is also important to note that the study of the multifaceted effects of melatonin on body functions opens up great prospects in the treatment of many diseases.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hui Han ◽  
Jinming Dou ◽  
Qingqing Hou ◽  
Huanjun Wang

Sign in / Sign up

Export Citation Format

Share Document