Reaction kinetics in continuous silicon carbide reinforced titanium 15V-3Cr-3Al-3Sn

1991 ◽  
Vol 13 (4) ◽  
pp. 251-255 ◽  
Author(s):  
Donald E. Morel
2019 ◽  
Vol 45 ◽  
pp. 146867831989141
Author(s):  
Bahador Abolpour ◽  
Rahim Shamsoddini

The reaction kinetics of carbon reduction of silica were investigated using thermodynamic concepts and by fitting to relevant models the experimental data obtained for this reduction using a thermogravimetric unit in the temperature range of 1566 to 1933 K. The results show that the only way to produce SiC in this reduction is the reaction of Si, SiO, or SiO2 at the surface or by diffusion of SiO inside the carbon particles while CO and CO2 have no direct effect on the process. The controlling step of this reduction at temperatures lower than 1750 K is the chemical gas–solid or solid–solid reaction at the surface of the carbon particles, while at higher temperatures, the rate of SiO diffusing inside the carbon particles controls the rate of this reduction.


2009 ◽  
Vol 35 (6) ◽  
pp. 2435-2441 ◽  
Author(s):  
K. Mlungwane ◽  
I. Sigalas ◽  
M. Herrmann ◽  
M. Rodríguez

2008 ◽  
Vol 20 (32) ◽  
pp. 325216 ◽  
Author(s):  
K L Wallis ◽  
J K Patyk ◽  
T W Zerda

1998 ◽  
Vol 183 (4) ◽  
pp. 581-593 ◽  
Author(s):  
R.S. Kern ◽  
S. Tanaka ◽  
L.B. Rowland ◽  
R.F. Davis

1983 ◽  
Vol 21 ◽  
Author(s):  
G. Papadimitriou ◽  
J.M.R. Genin

ABSTRACTThe bainite reaction in an Fe - 3.85 wt pct Si - 0.9 wt pct C steel is studied by several experimental techniques in the range of 250–450°C.The high silicon content prevents the formation of cementite, so that the reaction is separated to two clearly distinct stages. In the primary stage ferrite forms alone, except at temperatures lower than 310°C where some carbides precipitate in it, and austenite becomes enriched in carbon. In the secondary stage occurring only above 400°C, the enriched austenite decomposes to ferrite and an unknown silicon carbide.The microstructure, the enrichment of the austenite and the overall reaction kinetics of the two stages are studied and are found to be consistent with a displacive mechanism of the bainite reaction.A tentative model, accounting for the competition of shear and diffusion, is proposed in order to fit our experimental data.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


Sign in / Sign up

Export Citation Format

Share Document