On the determination of the course and termination of photoperiodic sensitivity in spring wheat (Triticum aestivum L.)

1961 ◽  
Vol 3 (3) ◽  
pp. 234-244 ◽  
Author(s):  
Fbideta Sbidlová-Blumová
2021 ◽  
pp. 259-265
Author(s):  
Nina Petrovna Kovalevskaya

The paper shows the effect of nitrogen nutrition, exogenous auxin, and rhizosphere auxin-synthesizing microorganisms on the variability of the composition of fatty acids (FA) in the vegetative organs of spring wheat. The object of the study was seedlings of spring soft wheat Triticum aestivum L. The determination of FAs was carried out by gas chromatography with mass spectrometry (GC-MS). Analysis of FAs showed that in the control variants (without auxin), nitrogen nutrition conditions did not affect the localization of polyunsaturated FAs in vegetative organs; the maximum content of triene FAs was observed in leaves of 48.30% (N-deficient variant) and 44.8% (NO-3-variant ) and the absence of these FAs in the roots. It was found that in the presence of nitrates, the proportion of unsaturated FAs in the leaves and roots of wheat decreases. The use of exogenous auxin (5–50 μg/ml) in the early stages of ontogenesis leads to an increase in the amount of saturated (palmitic and stearic) acids and a decrease in unsaturated acids in vegetative organs, regardless of the conditions of nitrogen nutrition. During the introduction of spring wheat seedlings by auxin-synthesizing microorganisms, it was noted that nitrogen-fixing bacteria affect the leaves of plants most effectively, the content of saturated FAs increases by 72%, and only 16% increases in these FAs in the leaves of nitrate-reducing microorganisms.


2019 ◽  
Vol 132 (11) ◽  
pp. 3023-3033 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Richard D. Cuthbert ◽  
Ron E. Knox ◽  
Arti Singh ◽  
Heather L. Campbell ◽  
...  

1991 ◽  
Vol 71 (2) ◽  
pp. 519-522 ◽  
Author(s):  
R. M. DePauw ◽  
K. R. Preston ◽  
T. F. Townley-Smith ◽  
E. A. Hurd ◽  
G. E. McCrystal ◽  
...  

Biggar red spring wheat (Triticum aestivum L.) combines high grain yield potential with semidwarf stature and wide adaptation. Biggar has improved end-use suitability relative to HY320 such as harder kernels, better flour milling properties, greater water absorption, and stronger gluten properties. It received registration No. 3089 and is eligible for grades of Canada Prairie Spring (red). Key words: Triticum aestivum, wheat (spring), high yield, cultivar description


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


2021 ◽  
pp. 1-10
Author(s):  
Chang Liu ◽  
Rehana S. Parveen ◽  
Samuel R. Revolinski ◽  
Kimberly A. Garland Campbell ◽  
Michael O. Pumphrey ◽  
...  

Abstract Genetic susceptibility to late maturity alpha-amylase (LMA) in wheat (Triticum aestivum L.) results in increased alpha-amylase activity in mature grain when cool conditions occur during late grain maturation. Farmers are forced to sell wheat grain with elevated alpha-amylase at a discount because it has an increased risk of poor end-product quality. This problem can result from either LMA or preharvest sprouting, grain germination on the mother plant when rain occurs before harvest. Whereas preharvest sprouting is a well-understood problem, little is known about the risk LMA poses to North American wheat crops. To examine this, LMA susceptibility was characterized in a panel of 251 North American hard spring wheat lines, representing ten geographical areas. It appears that there is substantial LMA susceptibility in North American wheat since only 27% of the lines showed reproducible LMA resistance following cold-induction experiments. A preliminary genome-wide association study detected six significant marker-trait associations. LMA in North American wheat may result from genetic mechanisms similar to those previously observed in Australian and International Maize and Wheat Improvement Center (CIMMYT) germplasm since two of the detected QTLs, QLMA.wsu.7B and QLMA.wsu.6B, co-localized with previously reported loci. The Reduced height (Rht) loci also influenced LMA. Elevated alpha-amylase levels were significantly associated with the presence of both wild-type and tall height, rht-B1a and rht-D1a, loci in both cold-treated and untreated samples.


Sign in / Sign up

Export Citation Format

Share Document