Numerical study on flow characteristics at blade passage and tip clearance in a linear cascade of high performance turbine blade

2003 ◽  
Vol 17 (4) ◽  
pp. 606-616 ◽  
Author(s):  
Hyon Kook Myong ◽  
Seung Yong Yang
2004 ◽  
Vol 128 (2) ◽  
pp. 300-309 ◽  
Author(s):  
P. J. Newton ◽  
G. D. Lock ◽  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
W. N. Dawes ◽  
...  

Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3×105 based on exit velocity and chord. Three different tip geometries were investigated: A flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualization computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualization and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design.


Author(s):  
P. J. Newton ◽  
S. K. Krishnababu ◽  
G. D. Lock ◽  
H. P. Hodson ◽  
W. N. Dawes ◽  
...  

Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3 × 105 based on exit velocity and chord. Three different tip geometries were investigated: a flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualisation computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualisation and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Sumanta Acharya ◽  
Louis Moreaux

Turbine blade tips are often the most susceptible to material failure due to the high-speed leakage flow and associated large thermal loadings. In this paper, the effect of the blade rotation and relative motion between the blade tip and shroud is studied numerically. Three different simulations have been undertaken: (1) a static case where the blade and the shroud are stationary (used as the reference case) (2) a linearly moving blade (or shroud) and (3) a rotating blade. Comparisons between cases 1 and 2 identify the effects of relative motion, while comparison between cases 2 and 3 delineate the effects of rotational Coriolis and centrifugal forces. Geometric effects were also studied through different combinations of tip gaps and squealer depths with the relative motion and rotational effects included. The calculations were done using a commercial flow solver, Fluent, using a block body-fitted mesh, Reynolds-averaged transport equations and a turbulence model. Results confirm the significant effects of the relative motion between the blade tip and shroud, and indicate that the assumption of pressure-driven leakage flows for blade tips is inappropriate. While rotational forces also play a role, the magnitude of their effects are relatively small compared to the relative motion effects. Geometric effects are also important with the lower tip clearance reducing leakage flow and allowing the tip coolant to migrate towards the SS with relative motion.


Author(s):  
F. Casey Wilkins ◽  
Gregory M. Feldman ◽  
Wayne S. Strasser ◽  
James H. Leylek

This work presents a numerical study that was done to investigate the heat transfer characteristics of a transonic turbine blade with a scalloped shroud operating at realistic engine conditions typical of those found in a large scale, land-based gas turbine. The geometry under investigation was an infinite, linear cascade composed of the same blade and shroud design used in an experimental test rig by the research sponsor. This simulation was run for varying nominal tip clearances of 20, 80, and 5.08 mm. For each of these clearances, the simulation was run with and without the scrubbing effects of the outer casing, resulting in a total of six cases that could be used to determine the influence of tip clearance and relative casing motion on heat transfer. A high quality grid (ranging from approximately 10–12 million finite volumes depending on tip clearance) with y+ for first layer cells at or below 1.0 everywhere was used to resolve the flow down to the viscous sublayer. The “realizable” k-ε turbulence model was used for all cases. A constant wall heat flux was imposed on all the surrounding surfaces to obtain heat transfer data. Results produced include a full map of heat transfer coefficients for the suction and pressure surfaces of the blade as well as the tip, shroud, and outer casing for every case. Physical mechanisms responsible for the final heat transfer outcome for all six cases are documented.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

Numerical calculations were performed to investigate unsteady features of tip clearance leakage flow in an axial compressor. The first stage rotor of a low speed axial compressor with a large tip clearance was examined. It was confirmed that the numerically calculated performance data were in good agreement with the experimentally measured performance data. Using frequency analysis, the flow characteristic near the casing induced by tip clearance leakage flow was found to be not associated with the rotating speed of the rotor. This characteristic is called rotating instability or self-induced unsteadiness. We found that the circumferential length scale of the rotating instability of the compressor was longer than a pitch of a blade passage; therefore, a multi-blade passage was adopted to study the flow structure more precisely. The flow characteristic was described by the frequency, the circumferential length, and the phase velocity, and was changed by operating points toward stall. The behavior of the flow was characterized by circumferentially traveling waves. Hence, the mechanism governing the development of the unsteady feature was further examined in terms of the rotating wave pattern of the pressure distribution. Furthermore, the unsteady feature of the tip clearance leakage flow affected the prediction of compressor performance by altering blockage, flow turning, and loss near the casing.


2021 ◽  
Vol 15 (1) ◽  
pp. 7637-7647
Author(s):  
E. Hosseini

One way to achieve high performance in the gas turbine is to increase the inlet temperature of the turbine. Different cooling techniques have been carried out in order to protect the turbine blades which have been exposed to such high temperatures. Film cooling as an essential cooling method needs to be enhanced to meet the challenging demand. The purpose of the present research is to analyze the film cooling performance over a NACA 0012 gas turbine blade using six different injection holes with and without opening angles, separately through Computational Fluid Dynamics (CFD). 2D Reynolds-Averaged Navier-Stokes (RANS) equations are implemented to consider the heat transfer and flow characteristics by using CFD code Ansys Fluent v16. The flow is considered as steady, turbulent, and incompressible. The RANS equation is solved with the finite-volume method for obtaining solutions. The simulation results revealed that the k-ω SST turbulence model is suitable for simulating the flow characteristics and analyzing the performance of film cooling over the blade. Also, the opening angle has a significant effect on increasing the cooling efficiency for the upper blade surface. The highest value of cooling efficiency is obtained by the injection hole with an opening angle of 15° and height of D. In this configuration, the coolant injected from hole provides better cooling coverage for the entire blade which increases the cooling effectiveness.


Author(s):  
Sumanta Acharya ◽  
Louis Moreaux

Turbine blade tips are often the most susceptible to material failure due to the high-speed leakage flow and associated large thermal loadings. In this paper, the effect of the blade rotation and relative motion between the blade tip and shroud is studied numerically. Three different simulations have been undertaken: (1) a static case where the blade and the shroud are stationary (used as the reference case) (2) a linearly moving blade (or shroud), and (3) a rotating blade. Comparisons between cases 1 and 2 identify the effects of relative motion, while comparison between cases 2 and 3 delineate the effects of rotational Coriolis and centrifugal forces. Geometric effects were also studied through different combinations of tip gaps and squealer depths with the relative motion and rotational effects included. The calculations were done using a commercial flow solver, Fluent, using a block body-fitted mesh, Reynolds-averaged transport equations and a turbulence model. Results confirm the significant effects of the relative motion between the blade tip and shroud, and indicate that the assumption of pressure-driven leakage flows for blade tips is inappropriate. While rotational forces also play a role, the magnitude of their effects are relatively small compared to the relative motion effects. Geometric effects are also important with the lower tip clearance reducing leakage flow and allowing the tip coolant to migrate towards the SS with relative motion.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
A. Arisi ◽  
J. Phillips ◽  
W. F. Ng ◽  
S. Xue ◽  
H. K. Moon ◽  
...  

Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer-tipped first stage rotor blade were measured using an infrared technique. The blade tip design, obtained from the Solar Turbines, Inc., gas turbine, consists of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit = 9.75 × 105) and 1.0 (Reexit = 1.15 × 106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio, BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds-averaged Navier–Stokes (RANS) equations solver ansys fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer-tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant–leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak HTC on the cavity floor increased with exit Mach/Reynolds number.


Author(s):  
William V. Banks ◽  
Ali A. Ameri ◽  
Robert J. Boyle ◽  
Jeffrey P. Bons

Abstract A numerical study was conducted to evaluate the loss sensitivity of shrouded vs. unshrouded turbine rotor blades. Accuracy is demonstrated with a series of grid independence studies. Application of the methods is performed through various studies related to the effects of shrouding a High-Pressure Turbine (HPT) rotor blade for a NASA-specified N+3 timeframe single-aisle aircraft engine at takeoff conditions. Flat, Recessed, and Shrouded rotor configurations are evaluated at tip clearances from 0.25% to 4% of blade span. Mach # distributions, near-tip blade loading, and other flow characteristics are examined. Plots of stage efficiency vs. tip clearance are presented, with trends compared to available experimental data. It is shown that for the imposed boundary conditions, the addition of a shroud improves stage efficiency and significantly reduces sensitivity to tip clearance at higher clearance fractions. A casing recess is also shown to slightly increase sensitivity to tip clearance for tip clearances greater than 0.5%. Total pressure loss profiles vs. blade span are also compared, providing insight into the mechanisms behind the performance of the three configurations.


Sign in / Sign up

Export Citation Format

Share Document