Effect of reduced N6-Benzyladenine, explant type, expiant orientation, culture temperature and culture vessel type on regeneration of adventitious shoot and in vitro plantlets ofSpilanthes acmella

2004 ◽  
Vol 47 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Tan Chee Leng ◽  
Ang Boon Haw ◽  
Chan Lai-Keng
2014 ◽  
pp. 125-136
Author(s):  
Marija Markovic ◽  
Mihailo Grbic ◽  
Dragana Skocajic ◽  
Matilda Djukic

The effect of the concentration of MS salts and explant type on D. serotinus rooting and acclimatization was investigated in order to optimize a protocol for the micropropagation of this species. The obtained results showed that explant type as well as the concentration of MS salts had a significant effect on rooting, and the highest rooting rate (85-86,7%) was achieved when culturing single-node cuttings and terminal buds on a half-strength MS medium supplemented with 0,5 mgL-1 NAA. Nevertheless, mean number of roots per explant was higher on the MS media (15,3-18,6) than on the half-strength MS media (11,8-13,4). The best acclimatization rate was obtained in a 4:1 mixture of peat and sand (83,3-86,7%). The explant type from which in vitro plantlets developed had no effect on the acclimatization rate.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1076-1078 ◽  
Author(s):  
Genhua Niu ◽  
Toyoki Kozai ◽  
Chieri Kubota

A system was designed for measuring the CO2 exchange rates [net photosynthetic rate (Pn) and dark respiration rate] of in vitro plantlets in situ (in the vessel with natural ventilation). The system, excluding gas cylinders, was placed in a growth chamber so that the desired photosynthetic photon flux (PPF) and temperature could be maintained during the measurement. The CO2 concentration inside the culture vessel (Ci) was indirectly controlled by controlling the CO2 concentration outside the vessel (Co). The Pn of the plantlets was estimated based on the measured Ci and Co at steady state using a gas chromatograph according to the method described by Fujiwara et al. (1987). The performance of the system was demonstrated by measuring the in situ Pn of sweetpotato [Ipomoea batatas (L.) Lam., cv. Beniazuma] and tomato (Lycopersicon esculentum Mill., cv. Hana Queen) plantlets in vitro under a range of CO2 concentrations and PPF. The photosynthetic parameters of the Pn model (Niu and Kozai, 1997) for the plantlets were then estimated based on the measured Pn. The preliminary measurements demonstrated the potential application of the system.


2020 ◽  
Vol 56 (4) ◽  
pp. 504-514 ◽  
Author(s):  
Aurélio Rubio Neto ◽  
Edvan Alves Chagas ◽  
Barbara Nogueira Souza Costa ◽  
Pollyana Cardoso Chagas ◽  
Wagner Aparecido Vendrame

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1011A-1011
Author(s):  
Jung Eek Son ◽  
Yil Jang ◽  
Jung Hyuk Seo

Supporting materials for rooting have a considerable influence on the growth and quality of in vitro plantlets. Various supporting materials (rockwool, perlite, vermiculite, and polyurethane) and nutrient supply cycles (12, 24, 36, and 48 hours) were examined to find the optimum conditions for photoautotrophic micropropagation of potato plantlets in the nutrient-circulated micropropagation (NCM) system. In the NCM system, nutrient solution was circulated between the culture vessel and the nutrient reservoir. A plug cell tray with 70 plantlets was placed inside. The number of air exchanges was 10 hours under forced ventilation. Nodal leafy cuttings of plantlets were cultured at CO2 concentrations (mol·mol-1)/PPF s (mol·m-2·s-1) of 350/80, 700/120, and 1500/250 on day 5-11, 12-18, and 19-28, respectively, for all treatments. All growth factors of in vitro plantlets grown for 28 days using rockwool, perlite and vermiculite were greater than those grown using polyurethane. Dry weight of plantlets grown using rockwool was eight times greater than those grown using polyurethane. The same results were obtained in the growth and survival percentages 14 days after transplanting to ex vitro conditions. Optimum nutrient supply cycles were 12, 24, and 48 hours when perlite, rockwool, and vermiculite were used as supporting materials, respectively. It was considered that the range of optimum nutrient supply cycle was affected by water retention characteristics of supporting materials. This study proved that the supporting material and the nutrient supply cycle were very important environmental factors in photoautotrophic mass propagation.


2008 ◽  
Vol 96 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Xiaojiao Han ◽  
Hongqiang Yang ◽  
Kaixuan Duan ◽  
Xinrong Zhang ◽  
Haizhou Zhao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3229
Author(s):  
Mat Yunus Najhah ◽  
Hawa Z. E. Jaafar ◽  
Jaafar Juju Nakasha ◽  
Mansor Hakiman

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Anthony J. Conner ◽  
Helen Searle ◽  
Jeanne M. E. Jacobs

Abstract Background A frequent problem associated with the tissue culture of Compositae species such as chicory (Cichorium intybus L.) and lettuce (Lactuca sativa L.) is the premature bolting to in vitro flowering of regenerated plants. Plants exhibiting such phase changes have poor survival and poor seed set upon transfer from tissue culture to greenhouse conditions. This can result in the loss of valuable plant lines following applications of cell and tissue culture for genetic manipulation. Results This study demonstrates that chicory and lettuce plants exhibiting stable in vitro flowering can be rejuvenated by a further cycle of adventitious shoot regeneration from cauline leaves. The resulting rejuvenated plants exhibit substantially improved performance following transfer to greenhouse conditions, with increased frequency of plant survival, a doubling of the frequency of plants that flowered, and substantially increased seed production. Conclusion As soon as in vitro flowering is observed in unique highly-valued chicory and lettuce lines, a further cycle of adventitious shoot regeneration from cauline leaves should be implemented to induce rejuvenation. This re-establishes a juvenile phase accompanied by in vitro rosette formation, resulting in substantially improved survival, flowering and seed set in a greenhouse, thereby ensuring the recovery of future generations from lines genetically manipulated in cell and tissue culture.


Sign in / Sign up

Export Citation Format

Share Document