Growth factor activation of the mitogen-activated protien (MAP) kinase pathway increases breast coactivator protein expression and stimulates breast tumourigenesis

2005 ◽  
Vol 174 (S1) ◽  
pp. 24-24
Author(s):  
R. S. Prichard ◽  
A. D. K. Hill ◽  
E. W. McDermott ◽  
N. J. O’Higgins ◽  
L. Young
1995 ◽  
Vol 15 (7) ◽  
pp. 3644-3653 ◽  
Author(s):  
R R Vaillancourt ◽  
L E Heasley ◽  
J Zamarripa ◽  
B Storey ◽  
M Valius ◽  
...  

When expressed in PC12 cells, the platelet-derived growth factor beta receptor (beta PDGF-R) mediates cell differentiation. Mutational analysis of the beta PDGF-R indicated that persistent receptor stimulation of the Ras/Raf/mitogen-activated protein (MAP) kinase pathway alone was insufficient to sustain PC12 cell differentiation. PDGF receptor activation of signal pathways involving p60c-src or the persistent regulation of phospholipase C gamma was required for PC12 cell differentiation. beta PDGF-R regulation of phosphatidylinositol 3-kinase, the GTPase-activating protein of Ras, and the tyrosine phosphatase, Syp, was not required for PC12 cell differentiation. In contrast to overexpression of oncoproteins involved in regulating the MAP kinase pathway, growth factor receptor-mediated differentiation of PC12 cells requires the integration of other signals with the Ras/Raf/MAP kinase pathway.


2013 ◽  
Vol 34 (12) ◽  
pp. 2900-2907 ◽  
Author(s):  
Xiaobo Zhang ◽  
Kyung-Won Min ◽  
Jason Liggett ◽  
Seung Joon Baek

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Cheryl L. Cragg ◽  
Janet C. MacKinnon ◽  
Bettina E. Kalisch

Nitric oxide (NO) modulates nerve-growth-factor- (NGF-) mediated signaling and gene expression. In the present paper, the role of NO in NGF-mediated Akt activation in PC12 and IMR32 cells was investigated. Cells were treated with NGF (50 ng/mL) in the presence or absence of NO synthase (NOS) inhibitors and Akt phosphorylation assessed by western blot analysis. In both cell lines, Akt was phosphorylated within 15 min of NGF treatment. In PC12 cells, this level of phosphorylation was sustained for 60 min, while in IMR32 cells, the activation decreased after 30 min of NGF treatment. The nonselective NOS inhibitor Nω-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on NGF-mediated Akt phosphorylation in PC12 cells but in combination with NGF, the iNOS selective inhibitor s-methylisothiourea (S-MIU; 2.0 mM) maintained Akt phosphorylation up to 2 h. In IMR32 cells, both L-NAME and S-MIU prolonged the activation of Akt. Pretreatment with 50 μM U0126, a MAP kinase pathway inhibitor, also increased the activation of Akt in both cell lines. These data suggest that NO modulates the duration of phosphorylation of Akt in response to NGF and that this effect may, in part, be mediated by the effects of NO on the Ras-MAP kinase pathway.


2020 ◽  
Vol 84 (12) ◽  
pp. 2428-2439
Author(s):  
Tomoyuki Hioki ◽  
Tetsu Kawabata ◽  
Go Sakai ◽  
Kazuhiko Fujita ◽  
Gen Kuroyanagi ◽  
...  

1995 ◽  
Vol 15 (10) ◽  
pp. 5524-5530 ◽  
Author(s):  
P Erhardt ◽  
J Troppmair ◽  
U R Rapp ◽  
G M Cooper

Growth factor stimulation of the mitogen-activated protein (MAP) kinase pathway in fibroblasts is inhibited by cyclic AMP (cAMP) as a result of inhibition of Raf-1. In contrast, cAMP inhibits neither nerve growth factor-induced MAP kinase activation nor differentiation in PC12 pheochromocytoma cells. Instead, in PC12 cells cAMP activates MAP kinase. Since one of the major differences between the Ras/Raf/MAP kinase cascades of these cell types is the expression of B-Raf in PC12 cells, we compared the effects of cAMP on Raf-1 and B-Raf. In PC12 cells maintained in serum-containing medium, B-Raf was refractory to inhibition by cAMP, whereas Raf-1 was effectively inhibited. In contrast, both B-Raf and Raf-1 were inhibited by cAMP in serum-starved PC12 cells. The effect of cAMP is thus dependent upon growth conditions, with B-Raf being resistant to cAMP inhibition in the presence of serum. These results were extended by studies of Rat-1 fibroblasts into which B-Raf had been introduced by transfection. As in PC12 cells, B-Raf was resistant to inhibition by cAMP in the presence of serum, whereas Raf-1 was effectively inhibited. In addition, the expression of B-Raf rendered Rat-1 cells resistant to the inhibitory effects of cAMP on both growth factor-induced activation of MAP kinase and mitogenesis. These results indicate that Raf-1 and B-Raf are differentially sensitive to inhibition by cAMP and that B-Raf expression can contribute to cell type-specific differences in the regulation of the MAP kinase pathway. In contrast to the situation in PC12 cells, cAMP by itself did not stimulate MAP kinase in B-Raf-expressing Rat-1 cells. The activation of MAP kinase by cAMP in PC12 cells was inhibited by the expression of a dominant negative Ras mutant, indicating that cAMP acts on a target upstream of Ras. Thus, it appears that a signaling component upstream of Ras is also require for cAMP stimulation of MAP kinase in PC12 cells.


2018 ◽  
Vol 118 ◽  
pp. 217-224 ◽  
Author(s):  
Tadahiro Numakawa ◽  
Haruki Odaka ◽  
Naoki Adachi ◽  
Shuichi Chiba ◽  
Yoshiko Ooshima ◽  
...  

2003 ◽  
Vol 31 (2) ◽  
pp. 352-353 ◽  
Author(s):  
K. Catlow ◽  
J.A. Deakin ◽  
M. Delehedde ◽  
D.G. Fernig ◽  
J.T. Gallagher ◽  
...  

Hepatocyte growth factor (HGF)/scatter factor (SF) is a unique growth factor, in that it binds both heparan sulphate (HS) and dermatan sulphate (DS). The sequences in HS and DS that specifically interact with and modulate HGF/SF activity have not yet been fully identified. Ascidian DS, which uniquely possesses O-sulphation at C-6 (and not C-4) of its N-acetylgalactosamine unit, was analysed for HGF/SF-binding activity in the biosensor. The kinetic analysis revealed a strong, biologically relevant interaction with an equilibrium dissociation constant (Kd) of approx. 1 nM. An Erk activation assay also demonstrated stimulation of the MAP kinase pathway downstream of the Met receptor following addition of both HGF/SF and ascidian DS to the glycosaminoglycan-deficient CHO-745 mutant cell line. Furthermore, the activation of Met and the MAP kinase pathway by HGF/SF and ascidian DS leads to a cellular response in the form of migration.


2010 ◽  
Vol 21 (4) ◽  
pp. 664-673 ◽  
Author(s):  
Jacob R. Haling ◽  
Fen Wang ◽  
Mark H. Ginsberg

Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway.


Sign in / Sign up

Export Citation Format

Share Document