Chemical composition and In vitro antioxidant and antidiabetic activities of Eucalyptus Camaldulensis Dehnh. essential oil

2010 ◽  
Vol 7 (1) ◽  
pp. 216-226 ◽  
Author(s):  
S. Sahin Basak ◽  
F. Candan
2020 ◽  
Vol 16 ◽  
Author(s):  
Javed Ahamad ◽  
Subasini Uthirapathy

Background: Eucalyptus camaldulensis Dehnh abundantly found in Erbil, Iraq and commonly used as antispasmodic and antipyretic remedy for treating respiratory tract diseases. The present study aimed to evaluate the effectiveness of E. camaldulensis in achieving glucose homeostasis through the inhibition of α-glucosidase enzyme using in-vitro model and also determine the chemical composition of essential oil by gas chromatography mass spectroscopy (GC/MS). Methods: The chemical composition of E. camaldulensis essential oil by was determined by GC/MS and its antidiabetic activity was assessed through inhibition of α-glucosidase enzyme in in-vitro models. Results: The essential oil yielded 40chemical constituents amounting to 98.55%. The major constituents of essential oil of E. camaldulensis leaf were 1,8-cineole (28.4%), isocaryophyllene oxide (8.4%), β-ocimene (7.9%), α-farnesene (7.9%), globulol (7.3%), terpinen-4-ol (7.6%), isophytol (3.6%), viridiflorol (3.2%), p-cymen-3-ol (3.1%) and α-bisabolol (1.2%). The essential oil of E. camaldulensis showed concentration dependent inhibition of α-glucosidase enzyme and the inhibition range from 75.38±2.09 to 6.08±1.89% for concentration 100 to 3.125 µg/mL. The α-glucosidase inhibition of E. camaldulensis (IC50 value 16.7±2.61 µg/mL) was found almost comparable with standard drug acarbose (IC50 value 12.04±3.17 µg/mL). Conclusion: The result of this study concluded that E. camaldulensis essential oil having 1,8-cineole, isocaryophyllene oxide and β-ocimene as major constituents, the study findings also confirm the traditional claim of its use in the treatment of diabetes mellitus.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


2019 ◽  
Vol 22 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Larissa Sousa Santos ◽  
Cassia Cristina Fernandes Alves ◽  
Elisângela Barbosa Borges Estevam ◽  
Carlos Henrique Gomes Martins ◽  
Thayná de Souza Silva ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196947 ◽  
Author(s):  
Paola Poma ◽  
Manuela Labbozzetta ◽  
Monica Notarbartolo ◽  
Maurizio Bruno ◽  
Antonella Maggio ◽  
...  

Author(s):  
Arunodaya H. S. ◽  
Krishna V. ◽  
Shashikumar R. ◽  
Girish Kumar K.

<p><strong>Objective: </strong>To evaluate the chemical composition, antibacterial and antioxidant properties of stem bark essential oil of <em>Litsea glutinosa </em>C. B. Rob.</p><p><strong>Methods: </strong>The essential oil isolated from stem bark of <em>L. glutinosa </em>and their chemical composition was analyzed by gas chromatography coupled with mass spectrometry detector. The <em>in vitro </em>antibacterial activity of the stem bark essential oil was investigated against eight human pathogenic bacterial clinical isolates using agar disc diffusion method and MIC value was determined by modified resazurin microtitre-plate assay. The antioxidant activity of essential oil was measured by 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH), 2, 2-azinobis-3-ethylbenzothiazoline-6-sulphonate radical cation (ABTS) and β-carotene bleaching assay.</p><p><strong>Results: </strong>GC-MS analysis of stem bark essential oil resulted in the identification of 37 compounds, off which 9,12-octadecadienoic acid (62.57%), hexadecanoic acid (12.68%), stigmast-5-en-3-ol (6.87%) and vitamin E (2.51%) were the main constituents representing 84.63% of the oil. The determination of <em>in vitro</em> antibacterial activity of stem bark essential oil resulted in significant inhibition zone (15.00±0.57 mm) and MIC value (0.15±0.15×10<sup>-2</sup> mg/ml) against the pathogenic bacteria <em>Vibrio cholera</em> followed by <em>Pseudomonas aeruginosa</em> and <em>Salmonella typhi. </em>The results of DPPH radical scavenging (IC<sub>50</sub>:4.540±0.06 µg/ml), ABTS (IC<sub>50</sub>:256.02±0.06 µg/ml) and β-carotene bleaching assay (%I: 78.51±0.42 <strong>%</strong>) showed significant <em>in vitro</em> antioxidant property.</p><p><strong>Conclusion: </strong><em>L. glutinosa</em> stem bark essential oil showed potential antibacterial activity against the <em>Vibrio cholera</em>. The results of this investigation supported the ethnomedical claim of essential oil as a demulcent, antidiarrheal and antioxidant drug.</p>


2017 ◽  
Vol 89 (4) ◽  
pp. 3005-3013 ◽  
Author(s):  
ELISÂNGELA B.B. ESTEVAM ◽  
ISABELLA P.B. DE DEUS ◽  
VANESSA P. DA SILVA ◽  
ELIZABETH A.J. DA SILVA ◽  
CASSIA C.F. ALVES ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 197
Author(s):  
Diogo Mendes da Silva ◽  
Suzan Kelly Vilela Bertolucci ◽  
Smail Aazza ◽  
Alexandre Alves de Carvalho ◽  
Simony Carvalho Mendonça ◽  
...  

The purpose of the present work was to evaluate the vegetative growth of Mentha piperita L. cultivated under different water availability, as well its influence in content, chemical composition and in vitro antioxidant activity of its essential oil. Plants were propagated by mother plants microcutting and scions were transplanted to 5 L pots with soil and cattle manure. Afterward, were kept at field capacity for 30 days and under treatment for 40 days. It was treated with different levels of water deficit treatments: (T1): 100 of field capacity (FC); (T2): 80 of FC; (T3): 60 of FC; (T4) 40 of FC with 5 blocks. Vegetative growth was evaluated by dry matter contents of all part of plants and by root/aerial rate. The essential oil of the leaves was extracted by hydrodistillation, analyzed by GC-FID and GC-MS and in vitro antioxidant potential was evaluated. A significant decrease in the dry matter of leaves and stems accompanied with a decrease in the roots dry matter was observed with an increase in the water stress. Quantitative chemical differences were observed in the chemical composition of the essential oil, according water availability. Total antioxidant activity showed a gradual increase as water stress progressed.


2010 ◽  
pp. 151-158 ◽  
Author(s):  
Slavenko Grbovic ◽  
Dejan Orcic ◽  
Maria Couladis ◽  
Emilija Jovin ◽  
Dusan Bugarin ◽  
...  

In the current study the essential oil obtained from the leaves of Eucalyptus camaldulensis plants collected from five localities of the Montenegro coastline was analyzed. The oil yield varied from 0.63 % (Kotor) up to 1.59% (Tivat). The chemical composition of the leaf essential oil was analyzed using GC-MS technique. Monoterpene hydrocarbons were a major class of compounds. Among them, dominant compounds were p-cymene (17.38-28.60%), ?-phellandrene (12.35-14.47%) and ?-pinene (0.94-11.48%). The second largest group was oxygenated monoterpenes with cryptone (4.97-7.25) and terpinene-4-ol (2.75-4.21%) as predominant. Besides high content of sesquiterpene alcohol spathulenol (7.83-14.15%) was found. According to the results obtained E. camaldulensis from Montenegro can be classified in the chemotype with low 1,8-cineole and high p-cymene and cryptone ratio.


Sign in / Sign up

Export Citation Format

Share Document