Complexing properties of humic substances isolated from sea water; the contribution of these substances to complexing capacities of water from the Baltic Sea and geochemical implications of this phenomenon

Author(s):  
Janusz Pempkowiak
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 317
Author(s):  
Darius Danusevičius ◽  
Jurata Buchovska ◽  
Vladas Žulkus ◽  
Linas Daugnora ◽  
Algirdas Girininkas

We aimed to extract DNA and amplify PCR fragments at the mitochondrial DNA Nad7.1 locus and 11 nuclear microsatellite loci in nine circa 11,000-year-old individuals of Scots pine found at the bottom of the Baltic sea and test the genetic associations with the present-day gene pool of Scots pine in Lithuania. We followed a strict anticontamination protocol in the lab and, simultaneously with the aDNA specimens, tested DNA-free controls. The DNA was extracted by an ATMAB protocol from the ancient wood specimens sampled underwater from Scots pine stumps located circa 20–30 m deep and circa 12 km ashore in western Lithuania. As the references, we used 30 present-day Lithuanian populations of Scots pine with 25–50 individuals each. The aDNA yield was 11–41 ng/μL. The PCR amplification for the mtDNA Nad7.1 locus and the nDNA loci yielded reliable aDNA fragments for three and seven out of nine ancient pines, respectively. The electrophoresis profiles of all the PCR tested DNA-free controls contained the sizing standard only, indicating low likelihood for contamination. At the mtDNA Nad7.1 locus, all three ancient Scots pine individuals had the type A (300 bp) allele, indicating postglacial migration from the refugia in Balkan peninsula. The GENECLASS Bayesian assignment tests revealed relatively stringer and consistent genetic associations between the ancient Scots pine trees and the present-day southern Lithuanian populations (assignment probability 0.37–0.55) and several wetlands in Lithuania. Our study shows that salty sea water efficiently preserves ancient DNA in wood at the quality levels suitable for genetic testing of trees dated back as far as 11,000 years before present.


2009 ◽  
Vol 6 (2) ◽  
pp. 1757-1817 ◽  
Author(s):  
R. Feistel ◽  
S. Weinreben ◽  
H. Wolf ◽  
S. Seitz ◽  
P. Spitzer ◽  
...  

Abstract. The brackish water of the Baltic Sea is a mixture of ocean water from the Atlantic/North Sea with fresh water from various rivers draining a large area of lowlands and mountain ranges. The evaporation-precipitation balance results in an additional but minor excess of fresh water. The rivers carry different loads of salts washed out of the ground, in particular calcium carbonate, which cause a composition anomaly of the salt dissolved in the Baltic Sea in comparison to Standard Seawater. Directly measured seawater density shows a related anomaly when compared to the density computed from the equation of state as a function of Practical Salinity, temperature and pressure. Samples collected from different regions of the Baltic Sea during 2006–2009 were analysed for their density anomaly. The results obtained for the river load deviate significantly from similar measurements carried out forty years ago; the reasons for this decadal variability are not yet fully understood. An empirical formula is derived which estimates Absolute from Practical Salinity of Baltic Sea water, to be used in conjunction with the new Thermodynamic Equation of Seawater 2010 (TEOS-10), endorsed by IOC/UNESCO in June 2009 as the substitute for the 1980 International Equation of State, EOS-80. Our routine measurements of the samples were accompanied by studies of additional selected properties which are reported here: conductivity, density, chloride, bromide and sulphate content, total CO2 and alkalinity.


Author(s):  
T. Kutser ◽  
T. Soomets ◽  
K. Toming ◽  
R. Uiboupin ◽  
A. Arikas ◽  
...  

2012 ◽  
Vol 57 (1) ◽  
pp. 325-337 ◽  
Author(s):  
Susanna Hietanen ◽  
Helena Jäntti ◽  
Christo Buizert ◽  
Klaus Jürgens ◽  
Matthias Labrenz ◽  
...  

Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 3-24 ◽  
Author(s):  
R. Feistel ◽  
S. Weinreben ◽  
H. Wolf ◽  
S. Seitz ◽  
P. Spitzer ◽  
...  

Abstract. The brackish water of the Baltic Sea is a mixture of ocean water from the Atlantic/North Sea with fresh water from various rivers draining a large area of lowlands and mountain ranges. The evaporation-precipitation balance results in an additional but minor excess of fresh water. The rivers carry different loads of salts washed out of the ground, in particular calcium carbonate, which cause a composition anomaly of the salt dissolved in the Baltic Sea in comparison to Standard Seawater. Directly measured seawater density shows a related anomaly when compared to the density computed from the equation of state as a function of Practical Salinity, temperature and pressure. Samples collected from different regions of the Baltic Sea during 2006–2009 were analysed for their density anomaly. The results obtained for the river load deviate significantly from similar measurements carried out forty years ago; the reasons for this decadal variability are not yet fully understood. An empirical formula is derived which estimates Absolute from Practical Salinity of Baltic Sea water, to be used in conjunction with the new Thermodynamic Equation of Seawater 2010 (TEOS-10), endorsed by IOC/UNESCO in June 2009 as the substitute for the 1980 International Equation of State, EOS-80. Our routine measurements of the samples were accompanied by studies of additional selected properties which are reported here: conductivity, density, chloride, bromide and sulphate content, total CO2 and alkalinity.


2020 ◽  
Vol 16 (4) ◽  
pp. 1617-1642 ◽  
Author(s):  
Hagen Radtke ◽  
Sandra-Esther Brunnabend ◽  
Ulf Gräwe ◽  
H. E. Markus Meier

Abstract. Interdecadal variability in the salinity of the Baltic Sea is dominated by a 30-year cycle with a peak-to-peak amplitude of around 0.4 g kg−1 at the surface. Such changes may have substantial consequences for the ecosystem, since species are adapted to a suitable salinity range and may experience habitat shifts. It is therefore important to understand the drivers of such changes. We use both analysis of empirical data and a numerical model reconstruction for the period of 1850–2008 to explain these interdecadal changes. The model explains 93 % and 52 % of the variance in the observed interdecadal salinity changes at the surface and the bottom, respectively, at an oceanographic station at Gotland Deep. It is known that the 30-year periodicity coincides with a variability in river runoff. Periods of enhanced runoff are followed by lower salinities. We demonstrate, however, that the drop in mean salinity cannot be understood as a simple dilution of the Baltic Sea water by freshwater. Rather, the 30-year periodicity in river runoff occurs synchronously with a substantial variation in salt water import across Darss Sill. Fewer strong inflow events occur in periods of enhanced river runoff. This reduction in the import of high-salinity water is the main reason for the freshening of the water below the permanent halocline. In the bottom waters, the variation in salinity is larger than at the surface. As a consequence, the surface layer salinity variation is caused by a combination of both effects: a direct dilution by river water and a reduced upward diffusion of salt as a consequence of reduced inflow activity. Our findings suggest that the direct dilution effect is responsible for 27 % of the salinity variations only. It remains unclear whether the covariation in river runoff and inflow activity are only a coincidental correlation during the historical period or whether a mechanistic link exists between the two quantities, e.g. whether both are caused by the same atmospheric patterns.


2006 ◽  
Vol 3 (4) ◽  
pp. 557-570 ◽  
Author(s):  
S. Walter ◽  
U. Breitenbach ◽  
H. W. Bange ◽  
G. Nausch ◽  
D. W. R. Wallace

Abstract. In January 2003, a major inflow of cold and oxygen-rich North Sea Water terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow in the production of nitrous oxide (N2O), we measured dissolved and atmospheric N


2017 ◽  
Vol 19 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Aleksandra Heimowska ◽  
Magda Morawska ◽  
Anita Bocho-Janiszewska

AbstractThe environmental degradation of poly(ε-caprolactone)[PCL] in natural fresh water (pond) and in The Baltic Sea is presented in this paper. The characteristic parameters of both environments were measured during experiment and their influence on the biodegradation of the samples was discussed. The loss of weight and changes of surface morphology of polymer samples were tested during the period of incubation. The poly(ε-caprolactone) was more biodegradable in natural sea water than in pond. PCL samples were completely assimilated over the period of six weeks incubation in The Baltic Sea water, but after forty two weeks incubation in natural fresh water the polymer weight loss was about 39%. The results have confirmed that the investigated polymers are susceptible to an enzymatic attack of microorganisms, but their activity depends on environments.


2018 ◽  
Vol 129 (2) ◽  
pp. 918-923 ◽  
Author(s):  
Andrei Bagaev ◽  
Liliya Khatmullina ◽  
Irina Chubarenko

Sign in / Sign up

Export Citation Format

Share Document