A proof rule for control loops

Author(s):  
Burghard von Karger
Keyword(s):  
TAPPI Journal ◽  
2017 ◽  
Vol 16 (7) ◽  
pp. 383-391
Author(s):  
CARLA CÉLIA ROSA MEDEIROS ◽  
FLÁVIA AZEVEDO SILVA ◽  
SAULO GODOY PIGNATON ◽  
ESTANISLAU VICTOR ZUTAUTAS ◽  
KLEVERSON FIGUEIREDO

There are many points in a kraft mill where the alkaline compounds are purged from the process. Several effluents, solid waste, and air emissions contain alkali, which leads to the necessity of chemical makeups to maintain the liquor balance. The main loss of alkali at the Veracel mill is present in the wastewater from the recovery boiler; more precisely, it is from the ash leaching system, which represents 80% of the total losses. To minimize the alkaline losses while keeping the chloride level in the recovery cycle under control, a project was developed at Veracel. Key actions were taken by adjusting the control loops of the ash leaching system, mainly on the slurry density and purge control. These adjustments led to a decrease in alkali losses and to an increase of treated ash, and kept the chloride level of the recovery boiler dust at 2.6%.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 177-184 ◽  
Author(s):  
K.H. Sørensen ◽  
D. Thornberg ◽  
K.F. Janning

In 1998, the capacity of the BIOSTYR® submerged biofilter at Nyborg WWTP was extended from 48,000 PE to 60,000 PE including advanced sensor based control, post-denitrification in BIOSTYR® and equalization of side flows. The existing configuration with 8 BIOSTYR® DN/N cells is based on pre-denitrification and an internal recirculation of 600–800%. The extended plant comprises 7 BIOSTYR® DN/N cells with 50–225% recirculation followed by 3 BIOSTYR DN cells for post-denitrification. The advanced control loops include blower control, control of the number of active cells (stand-by), automatic switch to high load configuration, control of the side flow equalization, control of the internal recirculation and control of the external carbon source dosing. In this paper, the achieved improvements are documented by comparing influent and effluent data, methanol and energy consumption from comparable periods before and after the extension. Although the nitrogen load to the plant was increased by 20% after the extension, the effluent quality has improved significantly with a reduction of Total-N from 7–8 mg/l to 3–4 mg/l. Simultaneously, the methanol consumption has been reduced by more than 50% per kg removed nitrogen. The energy consumption remained constant although the nitrogen load was increased by 20% and the inflow by 80%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Leyre Azpilicueta ◽  
Chan H. See ◽  
Raed Abd-Alhameed ◽  
...  

AbstractMatching the antenna’s impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna’s radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3163
Author(s):  
Chen Huang ◽  
Lidan Zhou ◽  
Zujia Cao ◽  
Gang Yao

Multi-phase motors and generators are regarded with great fault tolerance capability, especially on open-circuit faults. Various mathematics analytical methods are applied for their fault control. In this paper, a fault-tolerant control strategy with asymmetric phase current for the open-circuit faults with arbitrary phases in the six-phase PMSM (six-phase permanent magnetic synchronous motor, 6P-PMSM) system, is proposed for better electrical and dynamical performance of the machine. An innovative mathematical model for PMSM under one to four-phase-open circuit faults are established considering the asymmetry of the machine. Combining with time-varying relations in machines’ working conditions, targeted decoupling transformation matrixes of every kind of open-circuit faults are settled by voltage equations under different faults. Modified control strategy with a connection between the neutral point and the inverter’s DC side is presented, which aims at increasing the system redundancy and reducing the amplitude of phase currents. Besides, improved control loops with two layers are put forward as well, with which the PMSM system acquires fewer harmonics in phase current and smoother electromagnetic torque. Simulation and experimental results of open-circuit faults are provided for verification of the theoretical analysis.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Mehran Pirooz ◽  
Seyed Hossein Mirmahdi ◽  
Ahmad Reza Khoogar

AbstractIn this paper, a new approach is proposed to control the dynamic response of a landing gear system subjected to runway force, both on heavy landing conditions and at the taxiing process. The mathematical model of the system is used in a way that covers nonlinear dynamics characteristics of landing gear and nonlinear/nonaffine property of the external actuator. The operation of the landing gear system and its components are described briefly. The desired control system includes two different interior loops for displacement and force control. The inner loop determines the actuator force and the outer loop performs the displacement control. A lumped uncertainty is considered in both displacement and force control loops that represent uncertainties including parametric errors, measurement noises, unmodeled dynamics, disturbance due to runway excitation, and other disturbances. The direct method of Lyapunov is utilized for asymptotic stability analysis of the robust nonlinear control system (RNCS). This system is simulated in MATLAB software and the performance of the proposed controller is analyzed exactly. Besides, the results are compared with a passive system and conventional PID control. The comparison indicates that RNCS works better and more precisely. This method can reduce vibrations at touchdown and taxiing and effectively overcome uncertainty and provide well aircraft handling by decreasing the changes in tire force.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 831
Author(s):  
Izzat Al-Darraji ◽  
Dimitrios Piromalis ◽  
Ayad A. Kakei ◽  
Fazal Qudus Khan ◽  
Milos Stojemnovic ◽  
...  

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d'Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.


Sign in / Sign up

Export Citation Format

Share Document