scholarly journals Chiral hydrodynamics in strong external magnetic fields

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martin Ammon ◽  
Sebastian Grieninger ◽  
Juan Hernandez ◽  
Matthias Kaminski ◽  
Roshan Koirala ◽  
...  

Abstract We construct the general hydrodynamic description of (3+1)-dimensional chiral charged (quantum) fluids subject to a strong external magnetic field with effective field theory methods. We determine the constitutive equations for the energy-momentum tensor and the axial charge current, in part from a generating functional. Furthermore, we derive the Kubo formulas which relate two-point functions of the energy-momentum tensor and charge current to 27 transport coefficients: 8 independent thermodynamic, 4 independent non-dissipative hydrodynamic, and 10 independent dissipative hydrodynamic transport coefficients. Five Onsager relations render 5 more transport coefficients dependent. We uncover four novel transport effects, which are encoded in what we call the shear-induced conductivity, the two expansion-induced longitudinal conductivities and the shear-induced Hall conductivity. Remarkably, the shear-induced Hall conductivity constitutes a novel non-dissipative transport effect. As a demonstration, we compute all transport coefficients explicitly in a strongly coupled quantum fluid via holography.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Xuanting Ji ◽  
Yan Liu ◽  
Ya-Wen Sun ◽  
Yun-Long Zhang

Abstract We present effective field theories for the weakly coupled Weyl-Z2 semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the Z2 anomaly and possess topological quantum phase transitions from the Weyl-Z2 semimetal phases to partly or fully topological trivial phases. We find that the topological phase transition is characterized by the anomalous transport parameters, i.e. the anomalous Hall conductivity and the Z2 anomalous Hall conductivity. These two parameters are nonzero at the Weyl-Z2 semimetal phase and vanish at the topologically trivial phases. In the holographic case, the different behavior between the two anomalous transport coefficients is discussed. Our work reveals the novel phase structure of strongly interacting Weyl-Z2 semimetal with two pairs of nodes.


The problem is considered of defining multipole moments for a tensor field given on a curved spacetime, with the aim of applying this to the energy-momentum tensor and charge-current vector of an extended body. Consequently, it is assumed that the support of the tensor field is bounded in spacelike directions. A definition is proposed for ‘a set of multipole moments’ of such a tensor field relative to an arbitrary bitensor propagator. This definition is not fully determinate, but any such set of moments completely determines the original tensor field. By imposing additional conditions on the moments in two different ways, two uniquely determined sets of moments are obtained for a vector field J α . The first set, the complete moments , always exists and agrees with moments defined less explicitly by Mathisson. If V α J α = 0, as is the case for the charge-current vector, these moments are interrelated by an infinite set of corresponding restrictions. The second set, the reduced moments , exists if and only if V α J α = 0. These avoid such an infinite set of interrelations, there being instead only one such restriction, the constancy of the total charge of the body. The energy-momentum tensor will be treated in a subsequent paper.


A study is made of the motion of an extended body in arbitrary gravitational and electromagnetic fields. In a previous paper it was shown how to construct a set of reduced multipole moments of the charge-current vector for such a body. This is now extended to a corresponding treatment of the energy-momentum tensor. It is shown that, taken together, these two sets of moments have the following three properties. First, they provide a full description of the body, in that they determine completely the energy-momentum tensor and charge-current vector from which they are constructed. Secondly, they include the total charge, total momentum vector and total angular momentum (spin) tensor of the body. Thirdly, the only restrictions on the moments, apart from certain symmetry and orthogonality conditions, are the equations of motion for the total momentum and spin, and the conservation of total charge. The time dependence of the higher moments is arbitrary, since the process of reduction used to construct the moments has eliminated those contributions to these moments whose behaviour is determinate. The uniqueness of the chosen set of moments is investigated, leading to the discovery of a set of properties which is sufficient to characterize them uniquely. The equations of motion are first obtained in an exact form. Under certain conditions, the contributions from the moments of sufficiently high order are seen to be negligible. It is then convenient to make the multipole , in which these high order terms are omitted. When this is done, further simplifications can be made to the equations of motion. It is shown that they take an especially simple form if use is made of the extension operator of Veblen & Thomas. This is closely related to repeated covariant differentiation, but is more useful than that for present purposes. By its use, an explicit form is given for the equations of motion to any desired multipole order. It is shown that they agree with the corresponding Newtonian equations in the appropriate limit.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 241
Author(s):  
Pei-Ming Ho ◽  
Yuki Yokokura

For an effective field theory in the background of an evaporating black hole with spherical symmetry, we consider non-renormalizable interactions and their relevance to physical effects. The background geometry is determined by the semi-classical Einstein equation for an uneventful horizon where the vacuum energy–momentum tensor is small for freely falling observers. Surprisingly, after Hawking radiation appears, the transition amplitude from the Unruh vacuum to certain multi-particle states grows exponentially with time for a class of higher-derivative operators after the collapsing matter enters the near-horizon region, despite the absence of large curvature invariants. Within the scrambling time, the uneventful horizon transitions towards a firewall, and eventually the effective field theory breaks down.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yong-Liang Ma ◽  
Mannque Rho

AbstractTopology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the limit of large number of colors, baryons can be regarded as topological objects—skyrmions—and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying on possible “emergent” scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density n0 up to several times n0 can be fairly well described. A uniquely novel—and unorthdox—feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^{2}_{s}/c^{2} \approx 1/3$ v s 2 / c 2 ≈ 1 / 3 , with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $\gtrsim 2n_{0}$ ≳ 2 n 0 in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.


Sign in / Sign up

Export Citation Format

Share Document