scholarly journals Boundaries, Vermas and factorisation

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mathew Bullimore ◽  
Samuel Crew ◽  
Daniel Zhang

Abstract We revisit the factorisation of supersymmetric partition functions of 3d $$ \mathcal{N} $$ N = 4 gauge theories. The building blocks are hemisphere partition functions of a class of UV $$ \mathcal{N} $$ N = (2, 2) boundary conditions that mimic the presence of isolated vacua at infinity in the presence of real mass and FI parameters. These building blocks can be unambiguously defined and computed using supersymmetric localisation. We show that certain limits of these hemisphere partition functions coincide with characters of lowest weight Verma mod- ules over the quantised Higgs and Coulomb branch chiral rings. This leads to expressions for the superconformal index, twisted index and S3 partition function in terms of such characters. On the way we uncover new connections between boundary ’t Hooft anomalies, hemisphere partition functions and lowest weights of Verma modules.

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Francesco Fucito ◽  
Jose Francisco Morales ◽  
Massimiliano Ronzani ◽  
Ekaterina Sysoeva ◽  
...  

AbstractWe compute the $$\mathcal{N}=2$$ N = 2 supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $$\mathbb {C}^2$$ C 2 . The evaluation of these residues is greatly simplified by using an “abstruse duality” that relates the residues at the poles of the one-loop and instanton parts of the $$\mathbb {C}^2$$ C 2 partition function. As particular cases, our formulae compute the SU(2) and SU(3) equivariant Donaldson invariants of $$\mathbb {P}^2$$ P 2 and $$\mathbb {F}_n$$ F n and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the SU(2) case. Finally, we show that the U(1) self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $$\mathcal {N}=2$$ N = 2 analog of the $$\mathcal {N}=4$$ N = 4 holomorphic anomaly equations.


2011 ◽  
Vol 08 (08) ◽  
pp. 1747-1762 ◽  
Author(s):  
AMIR ABBASS VARSHOVI

A gauge invariant partition function is defined for gauge theories which leads to the standard quantization. It is shown that the descent equations and consequently the consistent anomalies and Schwinger terms can be extracted from this modified partition function naturally.


2004 ◽  
Vol 19 (24) ◽  
pp. 4127-4163 ◽  
Author(s):  
A. ALEXANDROV ◽  
A. MOROZOV ◽  
A. MIRONOV

Even though matrix model partition functions do not exhaust the entire set of τ-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. Here we restrict our consideration to the finite-size Hermitian 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV–DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished).


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hee-Cheol Kim ◽  
Minsung Kim ◽  
Sung-Soo Kim

Abstract We compute the partition function for 6d $$ \mathcal{N} $$ N = 1 SO(2N) gauge theories compactified on a circle with ℤ2 outer automorphism twist. We perform the computation based on 5-brane webs with two O5-planes using topological vertex with two O5-planes. As representative examples, we consider 6d SO(8) and SU(3) gauge theories with ℤ2 twist. We confirm that these partition functions obtained from the topological vertex with O5-planes indeed agree with the elliptic genus computations.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Arash Arabi Ardehali ◽  
Junho Hong

Abstract We present a prototype for Wilsonian analysis of asymptotics of supersymmetric partition functions of non-abelian gauge theories. Localization allows expressing such partition functions as an integral over a BPS moduli space. When the limit of interest introduces a scale hierarchy in the problem, asymptotics of the partition function is obtained in the Wilsonian approach by i) decomposing (in some suitable scheme) the BPS moduli space into various patches according to the set of light fields (lighter than the scheme dependent cut-off Λ) they support, ii) localizing the partition function of the effective field theory on each patch (with cut-offs set by the scheme), and iii) summing up the contributions of all patches to obtain the final asymptotic result (which is scheme-independent and accurate as Λ → ∞). Our prototype concerns the Cardy-like asymptotics of the 4d superconformal index, which has been of interest recently for its application to black hole microstate counting in AdS5/CFT4. As a byproduct of our analysis we obtain the most general asymptotic expression for the index of gauge theories in the Cardy-like limit, encompassing and extending all previous results.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Samuel Crew ◽  
Nick Dorey ◽  
Daniel Zhang

Abstract We study the hemisphere partition function of a three-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric U(N) gauge theory with one adjoint and one fundamental hypermultiplet — the ADHM quiver theory. In particular, we propose a distinguished set of UV boundary conditions which yield Verma modules of the quantised chiral rings of the Higgs and Coulomb branches. In line with a recent proposal by two of the authors in collaboration with M. Bullimore, we show explicitly that the hemisphere partition functions recover the characters of these modules in two limits, and realise blocks gluing exactly to the partition functions of the theory on closed three-manifolds. We study the geometry of the vortex moduli space and investigate the interpretation of the vortex partition functions as equivariant indices of quasimaps to the Hilbert scheme of points in ℂ2. We also investigate half indices of the ADHM quiver gauge theory in the presence of a line operator and discuss their geometric interpretation. Along the way we find interesting relations between our hemisphere blocks and related quantities in topological string theory and equivariant quantum K-theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Rui-Dong Zhu

Abstract We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of [1]. Using the O-vertex it is possible to compute the Nekrasov partition functions of 5d theories realized on any 5-brane web diagrams with O5-planes. We apply our proposal to 5-brane webs with an O5-plane and compute the partition functions of pure SO(N) gauge theories and the pure G2 gauge theory. The obtained results agree with the results known in the literature. We also compute the partition function of the pure SU(3) gauge theory with the Chern-Simons level 9. At the end we rewrite the O-vertex in a form of a vertex operator.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sung-Soo Kim ◽  
Yuji Sugimoto ◽  
Futoshi Yagi

Abstract We study 6d E-string theory with defects on a circle. Our basic strategy is to apply the geometric transition to the supersymmetric gauge theories. First, we calculate the partition functions of the 5d SU(3)0 gauge theory with 10 flavors, which is UV-dual to the 5d Sp(2) gauge theory with 10 flavors, based on two different 5-brane web diagrams, and check that two partition functions agree with each other. Then, by utilizing the geometric transition, we find the surface defect partition function for E-string on ℝ4 × T2. We also discuss that our result is consistent with the elliptic genus. Based on the result, we show how the global symmetry is broken by the defects, and discuss that the breaking pattern depends on where/how we insert the defects.


2020 ◽  
Vol 35 (33) ◽  
pp. 2050207
Author(s):  
Taro Kimura ◽  
Jun Nian ◽  
Peng Zhao

We compute the partition functions of [Formula: see text] gauge theories on [Formula: see text] using supersymmetric localization. The path integral reduces to a sum over vortices at the poles of [Formula: see text] and at the origin of [Formula: see text]. The exact partition functions allow us to test Seiberg duality beyond the supersymmetric index. We propose the [Formula: see text] partition functions on the [Formula: see text]-background, and show that the Nekrasov partition functions can be recovered from these building blocks.


Sign in / Sign up

Export Citation Format

Share Document