scholarly journals Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated

2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Philip C. Argyres ◽  
Yongchao Lü ◽  
Mario Martone
Keyword(s):  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mathew Bullimore ◽  
Samuel Crew ◽  
Daniel Zhang

Abstract We revisit the factorisation of supersymmetric partition functions of 3d $$ \mathcal{N} $$ N = 4 gauge theories. The building blocks are hemisphere partition functions of a class of UV $$ \mathcal{N} $$ N = (2, 2) boundary conditions that mimic the presence of isolated vacua at infinity in the presence of real mass and FI parameters. These building blocks can be unambiguously defined and computed using supersymmetric localisation. We show that certain limits of these hemisphere partition functions coincide with characters of lowest weight Verma mod- ules over the quantised Higgs and Coulomb branch chiral rings. This leads to expressions for the superconformal index, twisted index and S3 partition function in terms of such characters. On the way we uncover new connections between boundary ’t Hooft anomalies, hemisphere partition functions and lowest weights of Verma modules.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Gabi Zafrir

Abstract We propose that a certain 4d$$ \mathcal{N} $$ N = 1 SU(2) × SU(2) gauge theory flows in the IR to an $$ \mathcal{N} $$ N = 3 SCFT plus a single free chiral field. The specific $$ \mathcal{N} $$ N = 3 SCFT has rank 1 and a dimension three Coulomb branch operator. The flow is generically expected to land at the $$ \mathcal{N} $$ N = 3 SCFT deformed by the marginal deformation associated with said Coulomb branch operator. We also present a discussion about the properties expected of various RG invariant quantities from $$ \mathcal{N} $$ N = 3 superconformal symmetry, and use these to test our proposal. Finally, we discuss a generalization to another $$ \mathcal{N} $$ N = 1 model that we propose is related to a certain rank 3 $$ \mathcal{N} $$ N = 3 SCFT through the turning of certain marginal deformations.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Adam Chalabi ◽  
S. Prem Kumar ◽  
Andy O’Bannon ◽  
Anton Pribytok ◽  
Ronnie Rodgers ◽  
...  

Abstract We compute entanglement entropy (EE) of a spherical region in (3 + 1)-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory in states described holographically by probe D3-branes in AdS5 × S5. We do so by generalising methods for computing EE from a probe brane action without having to determine the probe’s backreaction. On the Coulomb branch with SU(N) broken to SU(N − 1) × U(1), we find the EE monotonically decreases as the sphere’s radius increases, consistent with the a-theorem. The EE of a symmetric-representation Wilson line screened in SU(N − 1) also monotonically decreases, although no known physical principle requires this. A spherical soliton separating SU(N) inside from SU(N − 1) × U(1) outside had been proposed to model an extremal black hole. However, we find the EE of a sphere at the soliton’s radius does not scale with the surface area. For both the screened Wilson line and soliton, the EE at large radius is described by a position-dependent W-boson mass as a short-distance cutoff. Our holographic results for EE and one-point functions of the Lagrangian and stress-energy tensor show that at large distance the soliton looks like a Wilson line in a direct product of fundamental representations.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Daniel Elander ◽  
Maurizio Piai ◽  
John Roughley
Keyword(s):  

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


2013 ◽  
Vol 28 (03n04) ◽  
pp. 1340006 ◽  
Author(s):  
OSCAR CHACALTANA ◽  
JACQUES DISTLER ◽  
YUJI TACHIKAWA

We study the local properties of a class of codimension-2 defects of the 6d [Formula: see text] theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra [Formula: see text], where [Formula: see text] is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU (N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo

Abstract We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch operators in 4d$$ \mathcal{N} $$ N = 2 superconformal theories. We start by revisiting previous results on single correlators of Coulomb branch operators. In particular, we present improved bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them to recent work where the same cofficients were obtained in the limit of large r charge. There is solid agreement between all the approaches. The improved bounds can be used to extract an approximate spectrum of the Argyres-Douglas models, which can then be used as a guide in order to corner these theories to numerical islands in the space of conformal dimensions. When there is a flavor symmetry present, we complement the analysis by including mixed correlators of Coulomb branch operators and the moment map, a Higgs branch operator which sits in the same multiplet as the flavor current. After calculating the relevant superconformal blocks we apply the numerical machinery to the mixed system. We put general constraints on CFT data appearing in the new channels, with particular emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the (p, q) 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.


Sign in / Sign up

Export Citation Format

Share Document