scholarly journals Unitarity at the late time boundary of de Sitter

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Gizem Şengör ◽  
Constantinos Skordis
Keyword(s):  
2018 ◽  
Vol 98 (10) ◽  
Author(s):  
Shumpei Yamaguchi ◽  
Rumi Tatsukawa ◽  
Shih-Yuin Lin ◽  
Kazuhiro Yamamoto

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Genly Leon ◽  
Sebastián Cuéllar ◽  
Esteban González ◽  
Samuel Lepe ◽  
Claudio Michea ◽  
...  

AbstractScalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ γ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ γ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.


2004 ◽  
Vol 19 (31) ◽  
pp. 5343-5350 ◽  
Author(s):  
DAMIEN A. EASSON

Modified gravitational theories can provide alternatives to dark energy as an explaination for the observed late-time cosmic acceleration. Several examples of low-curvature corrections to the Einstein-Hilbert action are studied. These models generically contain unstable de Sitter solutions and, depending on the parameters of the theory, can exhibit late time accelerating attractor solutions.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850199 ◽  
Author(s):  
A. I. Keskin

In this study, we examine two models of the scalar field, that is, a normal scalar field and a tachyon scalar field in [Formula: see text] gravity to describe cosmic acceleration of the universe, where [Formula: see text], [Formula: see text] and [Formula: see text] are Ricci curvature scalar, trace of energy–momentum tensor and kinetic energy of scalar field [Formula: see text], respectively. Using the minimal-coupling Lagrangian [Formula: see text], for both the scalar models we obtain a viable cosmological system, where [Formula: see text] and [Formula: see text] are real constants. While a normal scalar field gives a system describing expansion from the deceleration to the late-time acceleration, tachyon field together with [Formula: see text] in the system produces a quintessential expansion which is very close to de Sitter point, where we find a new condition [Formula: see text] for inflation.


2011 ◽  
Vol 08 (06) ◽  
pp. 1179-1188 ◽  
Author(s):  
KOUROSH NOZARI ◽  
F. KIANI

We study the phase space of an extension of the normal DGP cosmology with a cosmological constant on the brane and curvature effect that is incorporated via the Gauss–Bonnet term in the bulk action. We study late-time cosmological dynamics of this scenario within a dynamical system approach. We show that the stable solution of the cosmological dynamics in this model is a de Sitter phase.


2001 ◽  
Vol 16 (20) ◽  
pp. 1303-1313 ◽  
Author(s):  
A. A. SEN ◽  
S. SEN

We have investigated the cosmological scenarios with a four-dimensional effective action which is connected with multidimensional, supergravity and string theories. The solution for the scale factor is such that initially universe undergoes a decelerated expansion but in late times it enters into the accelerated expansion phase. In fact, it asymptotically becomes a de Sitter universe. The dilaton field in our model is a decreasing function of time and it becomes a constant in late time resulting the exit from the scalar–tensor theory to the standard Einstein's gravity. Also the dilaton field results in the existence of a positive cosmological constant in late times.


2017 ◽  
Vol 95 (12) ◽  
pp. 1267-1270
Author(s):  
Raj Bali ◽  
P. Kumari

Chaotic inflationary scenario in spatially homogeneous Bianchi type V space–time following Linde (Phys. Lett. B, 129, 177 (1983). doi: 10.1016/0370-2693(83)90837-7 ) and the condition [Formula: see text] based on theory of super cooling during the cosmological phase transition proposed by Kirzhnits and Linde (Ann. Phys. 101, 195 (1976). doi: 10.1016/0003-4916(76)90279-7 ), is discussed. It has been found that the model represents anisotropic phase of the Universe in general but at late time, it isotropizes. The deceleration parameter q = −1 indicates that the model leads to de Sitter space–time. It is found that inflationary parameters, namely, slow roll parameters, and anisotropic parameters are in excellent agreement with the Planck Collaboration’s 2013 results (Astron. Astrophys. 571, A22 (2014). doi: 10.1051/0004-6361/201321569 ).


2005 ◽  
Vol 20 (15) ◽  
pp. 1147-1154 ◽  
Author(s):  
YI-HUAN WEI

We discuss the late-time property of universe and phantom field in the SO(1, 1) dark energy model for the potential V = V0e-βΦα with α and β two positive constants. We assume in advance some conditions satisfied by the late-time field to simplify equations, which are confirmed to be correct from the eventual results. For α < 2, the field falls exponentially off and the phantom equation of state rapidly approaches -1. When α = 2, the kinetic energy ρk and the coupling energy ρc become comparable but there is always ρk < -ρc so that the phantom property of field proceeds to hold. The analysis on the perturbation to the late-time field Φ illustrates the square effective mass of the perturbation field is always positive and thus the phantom is stable. The universe considered currently may evade the future sudden singularity and will evolve to de Sitter expansion phase.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


Sign in / Sign up

Export Citation Format

Share Document