scholarly journals EFT diagrammatica: UV roots of the CP-conserving SMEFT

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Supratim Das Bakshi ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract The Standard Model Effective Field Theory (SMEFT) is an established theoretical framework that parametrises the impact a UV theory has on low-energy observables. Such parametrization is achieved by studying the interactions of SM fields encapsulated within higher mass dimensional (≥ 5) operators. Through judicious employment of the tools of EFTs, SMEFT has become a source of new predictions as well as a platform for conducting a coherent comparison of new physics (beyond Standard Model) scenarios. We, for the first time, are proposing a diagrammatic approach to establish selection criteria for the allowed heavy field representations corresponding to each SMEFT operator. We have elucidated the links of a chain connecting specific CP conserving dimension-6 SMEFT operators with unique sets of heavy field representations. The contact interactions representing each effective operator have been unfolded into tree- and (or) one-loop-level diagrams to reveal unique embeddings of heavy fields within them. For each case, the renormalizable vertices of a UV model serve as the building blocks for all possible unfolded diagrams. Based on this, we have laid the groundwork to construct observable-driven new physics models. This in turn also prevents us from making redundant analyses of similar models. While we have taken a predominantly minimalistic approach, we have also highlighted the necessity for non-minimal interactions for certain operators.

2019 ◽  
Author(s):  
B. Lee Roberts

I discuss the history of the muon (g-2)(g−2) measurements, beginning with the Columbia-Nevis measurement that observed parity violation in muon decay, and also measured the muon gg-factor for the first time, finding g_\mu=2gμ=2. The theoretical (Standard Model) value contains contributions from quantum electrodynamics, the strong interaction through hadronic vacuum polarization and hadronic light-by-light loops, as well as the electroweak contributions from the WW, ZZ and Higgs bosons. The subsequent experiments, first at Nevis and then with increasing precision at CERN, measured the muon anomaly a_\mu = (g_\mu-2)/2aμ=(gμ−2)/2 down to a precision of 7.3 parts per million (ppm). The Brookhaven National Laboratory experiment E821 increased the precision to 0.54 ppm, and observed for the first time the electroweak contributions. Interestingly, the value of a_\muaμ measured at Brookhaven appears to be larger than the Standard Model value by greater than three standard deviations. A new experiment, Fermilab E989, aims to improve on the precision by a factor of four, to clarify whether this result is a harbinger of new physics entering through loops, or from some experimental, statistical or systematic issue.


2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.


2019 ◽  
Vol 34 (38) ◽  
pp. 2050065
Author(s):  
Gabriel Facini ◽  
Kyrylo Merkotan ◽  
Matthias Schott ◽  
Alexander Sydorenko

Fiducial production cross-section measurements of Standard Model processes, in principle, provide constraints on new physics scenarios via a comparison of the predicted Standard Model cross-section and the observed cross-section. This approach received significant attention in recent years, both from direct constraints on specific models and the interpretation of measurements in the view of effective field theories. A generic problem in the reinterpretation of Standard Model measurements is the corrections application of to data to account for detector effects. These corrections inherently assume the Standard Model to be valid, thus implying a model bias of the final result. In this work, we study the size of this bias by studying several new physics models and fiducial phase–space regions. The studies are based on fast detector simulations of a generic multi-purpose detector at the Large Hadron Collider. We conclude that the model bias in the associated reinterpretations is negligible only in specific cases, however, typically on the same level as systematic uncertainties of the available measurements.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


2016 ◽  
Vol 31 (33) ◽  
pp. 1644006 ◽  
Author(s):  
Stefan Antusch ◽  
Oliver Fischer

The nonunitarity of the leptonic mixing matrix is a generic signal of new physics aiming at the generation of the observed neutrino masses. We discuss the Minimal Unitarity Violation (MUV) scheme, an effective field theory framework which represents the class of extensions of the Standard Model (SM) by heavy neutral leptons, and discuss the present bounds on the nonunitarity parameters as well as estimates for the sensitivity of the CEPC, based on the performance parameters from the preCDR.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Timothy Cohen ◽  
Nathaniel Craig ◽  
Xiaochuan Lu ◽  
Dave Sutherland

Abstract There are two canonical approaches to treating the Standard Model as an Effective Field Theory (EFT): Standard Model EFT (SMEFT), expressed in the electroweak symmetric phase utilizing the Higgs doublet, and Higgs EFT (HEFT), expressed in the broken phase utilizing the physical Higgs boson and an independent set of Goldstone bosons. HEFT encompasses SMEFT, so understanding whether SMEFT is sufficient motivates identifying UV theories that require HEFT as their low energy limit. This distinction is complicated by field redefinitions that obscure the naive differences between the two EFTs. By reformulating the question in a geometric language, we derive concrete criteria that can be used to distinguish SMEFT from HEFT independent of the chosen field basis. We highlight two cases where perturbative new physics must be matched onto HEFT: (i) the new particles derive all of their mass from electroweak symmetry breaking, and (ii) there are additional sources of electroweak symmetry breaking. Additionally, HEFT has a broader practical application: it can provide a more convergent parametrization when new physics lies near the weak scale. The ubiquity of models requiring HEFT suggests that SMEFT is not enough.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Oleksandr Tomalak ◽  
Pedro Machado ◽  
Vishvas Pandey ◽  
Ryan Plestid

Abstract We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. 40Ar and 28Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error budget including uncertainties at nuclear, nucleon, hadronic, and quark levels separately as well as perturbative error. Our calculation starts from the four-fermion effective field theory to explicitly separate heavy-particle mediated corrections (which are absorbed by Wilson coefficients) from light-particle contributions. Electrons and muons running in loops introduce a non- trivial dependence on the momentum transfer due to their relatively light masses. These same loops, and those mediated by tau leptons, break the flavor universality because of mass-dependent electromagnetic radiative corrections. Nuclear physics uncertainties significantly cancel in flavor asymmetries resulting in subpercent relative errors. We find that for low neutrino energies, the cross section can be predicted with a relative precision that is competitive with neutrino-electron scattering. We highlight potentially useful applications of such a precise cross section prediction ranging from precision tests of the Standard Model, to searches for new physics and to the monitoring of nuclear reactors.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Víctor Bresó-Pla ◽  
Adam Falkowski ◽  
Martín González-Alonso

Abstract We study the forward-backward asymmetry AFB in pp → ℓ+ℓ− at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current AFB data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Chris Hays ◽  
Andreas Helset ◽  
Adam Martin ◽  
Michael Trott

Abstract The Standard Model Effective Field Theory (SMEFT) theoretical framework is increasingly used to interpret particle physics measurements and constrain physics beyond the Standard Model. We investigate the truncation of the effective-operator expansion using the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension eight. Using this construction, we compare the exact solution to the expansion at $$ \mathcal{O} $$ O (v2/Λ2), partial $$ \mathcal{O} $$ O (v4/Λ4) using a subset of terms with dimension-6 operators, and full $$ \mathcal{O} $$ O (v4/Λ4), where v is the vacuum expectation value and Λ is the scale of new physics. This comparison is performed for general values of the coefficients, and for the specific model of a heavy U(1) gauge field kinetically mixed with the Standard Model. We additionally determine the input-parameter scheme dependence at all orders in v/Λ, and show that this dependence increases at higher orders in v/Λ.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 461
Author(s):  
António P. Morais ◽  
Roman Pasechnik ◽  
Werner Porod

The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E6×SU(2)F×U(1)F GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.


Sign in / Sign up

Export Citation Format

Share Document