scholarly journals 6d/5d exceptional gauge theories from web diagrams

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Hee-Cheol Kim ◽  
Kantaro Ohmori

Abstract We construct novel web diagrams with a trivalent or quadrivalent gluing for various 6d/5d theories from certain Higgsings of 6d conformal matter theories on a circle. The theories realized on the web diagrams include 5d Kaluza-Klein theories from circle compactifications of the 6d G2 gauge theory with 4 flavors, the 6d F4 gauge theory with 3 flavors, the 6d E6 gauge theory with 4 flavors and the 6d E7 gauge theory with 3 flavors. The Higgsings also give rise to 5d Kaluza-Klein theories from twisted compactifications of 6d theories including the 5d pure SU(3) gauge theory with the Chern-Simons level 9 and the 5d pure SU(4) gauge theory with the Chern-Simons level 8. We also compute the Nekrasov partition functions of the theories by applying the topological vertex formalism to the newly obtained web diagrams.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Rui-Dong Zhu

Abstract We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of [1]. Using the O-vertex it is possible to compute the Nekrasov partition functions of 5d theories realized on any 5-brane web diagrams with O5-planes. We apply our proposal to 5-brane webs with an O5-plane and compute the partition functions of pure SO(N) gauge theories and the pure G2 gauge theory. The obtained results agree with the results known in the literature. We also compute the partition function of the pure SU(3) gauge theory with the Chern-Simons level 9. At the end we rewrite the O-vertex in a form of a vertex operator.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joseph A. Minahan ◽  
Anton Nedelin

Abstract We consider supersymmetric gauge theories on S5 with a negative Yang-Mills coupling in their large N limits. Using localization we compute the partition functions and show that the pure SU(N) gauge theory descends to an SU(N/2)+N/2× SU(N/2)−N/2× SU(2) Chern-Simons gauge theory as the inverse ’t Hooft coupling is taken to negative infinity for N even. The Yang-Mills coupling of the SU(N/2)±N/2 is positive and infinite, while that on the SU(2) goes to zero. We also show that the odd N case has somewhat different behavior. We then study the SU(N/2)N/2 pure Chern-Simons theory. While the eigenvalue density is only found numerically, we show that its width equals 1 in units of the inverse sphere radius, which allows us to find the leading correction to the free energy when turning on the Yang-Mills term. We then consider USp(2N) theories with an antisymmetric hypermultiplet and Nf< 8 fundamental hypermultiplets and carry out a similar analysis. Along the way we show that the one-instanton contribution to the partition function remains exponentially suppressed at negative coupling for the SU(N) theories in the large N limit.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2015 ◽  
Vol 93 (9) ◽  
pp. 971-973
Author(s):  
Lisa Jeffrey

We describe the relation between the Chern–Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these two Lagrangians agree, and we identify the semiclassical formula for the partition function defined using the symplectic action functional. We also compute the semiclassical formulas for the partition functions obtained using the two different Lagrangians: the Chern–Simons functional and the symplectic action functional.


2005 ◽  
Vol 14 (07) ◽  
pp. 1195-1231 ◽  
Author(s):  
FRANCESCO CIANFRANI ◽  
ANDREA MARROCCO ◽  
GIOVANNI MONTANI

We present a geometrical unification theory in a Kaluza–Klein approach that achieve the geometrization of a generic gauge theory bosonic component. We show how it is possible to derive gauge charge conservation from the invariance of the model under extra-dimensional translations and to geometrize gauge connections for spinors, in order to make possible to introducing matter just through free spinorial fields. Then we present the applications to (i) a pentadimensional manifold V4 ⊗ S1 so reproducing the original Kaluza–Klein theory with some extensions related to the rule of the scalar field contained in the metric and to the introduction of matter through spinors with a phase dependance from the fifth coordinate, (ii) a seven-dimensional manifold V4 ⊗ S1 ⊗ S2, in which we geometrize the electroweak model by introducing two spinors for every leptonic family and quark generation and a scalar field with two components with opposite hypercharge responsible for spontaneous symmetry breaking.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Siddharth Dwivedi ◽  
P. Ramadevi

In our recent paper, we systematized an inverse algorithm to obtain quiver gauge theory living on theM2-branes probing the singularities of a special kind of Calabi-Yau fourfold which were complex cones over toric Fanoℙ3,ℬ1,ℬ2,ℬ3. These quiver gauge theories cannot be given a dimer tiling presentation. We use the method of partial resolution to show that the toric data ofℂ4and Fanoℙ3can be embedded inside the toric data of Fanoℬtheories. This method indirectly justifies that the two-node quiver Chern-Simons theories corresponding toℂ4, Fanoℙ3, and their orbifolds can be obtained by higgsing matter fields of the three-node parent quiver corresponding to Fanoℬ1,ℬ2,ℬ3,ℬ4threefold.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hee-Cheol Kim ◽  
Minsung Kim ◽  
Sung-Soo Kim

Abstract We compute the partition function for 6d $$ \mathcal{N} $$ N = 1 SO(2N) gauge theories compactified on a circle with ℤ2 outer automorphism twist. We perform the computation based on 5-brane webs with two O5-planes using topological vertex with two O5-planes. As representative examples, we consider 6d SO(8) and SU(3) gauge theories with ℤ2 twist. We confirm that these partition functions obtained from the topological vertex with O5-planes indeed agree with the elliptic genus computations.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.


1990 ◽  
Vol 05 (07) ◽  
pp. 1267-1284 ◽  
Author(s):  
B.A. BAMBAH ◽  
C. MUKKU

The effective Lagrangian for a three-dimensional gauge theory with a Chern-Simons term is evaluated up to one-loop effects. It is shown to be completely finite. It also does not exhibit any imaginary part. The calculation is carried out in a background field analogue of the Feynman gauge and gauge invariance is maintained throughout the calculation. In the appendix, an argument is presented as to why this Feynman gauge may be a “good” gauge for our results to be applied to high temperature QCD and in particular to the quark-gluon plasma.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


Sign in / Sign up

Export Citation Format

Share Document