scholarly journals Negative energy enhancement in layered holographic conformal field theories

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alex May ◽  
Petar Simidzija ◽  
Mark Van Raamsdonk

Abstract Using a holographic model, we study quantum field theories with a layer of one CFT surrounded by another CFT, on either a periodic or an infinite direction. We study the vacuum energy density in each CFT as a function of the central charges, the thickness of the layer(s), and the properties of the interfaces between the CFTs. The dual spacetimes in the holographic model include two regions separated by a dynamical interface with some tension. For two or more spatial dimensions, we find that a layer of CFT with more degrees of freedom than the surrounding one can have an anomalously large negative vacuum energy density for certain types of interfaces. The negative energy density (or null-energy density in the direction perpendicular to the interface) becomes arbitrarily large for fixed layer width when the tension of the bulk interface approaches a lower critical value. We argue that in cases where we have large negative energy density, we also have an anomalously high transition temperature to the high-temperature thermal state.

2009 ◽  
Vol 24 (24) ◽  
pp. 1907-1914 ◽  
Author(s):  
O. OBREGÓN ◽  
M. SABIDO ◽  
E. MENA

In this letter we study the effects of a noncommutative minisuperspace, including matter degrees of freedom on a toy model for FRW universe with cosmological constant. In this simple model the vacuum energy density is modified by the presence of the noncommutative minisuperspace parameter, from which we conjecture on the discrepancy between the calculated and observed vacuum energy density associated to Λ.


Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Farhad Rachidi

According to the current understanding, the recently observed   accelerated expansion of the universe is caused by the dark or the vacuum energy. Attempts to calculate the magnitude of this energy using the standard model of particle physics led to values which are 59 – 120 orders of magnitude larger than the experimentally estimated one. Even though the expanding space has positive internal energy, in a flat universe it is completely balanced by the negative energy of gravitational field making the net energy equal to zero. However, the current physical theories may breakdown for times less than or on the order of Planck time and one cannot assume that the above assertion concerning the balance of two energies is valid also in this time scale. In this note it is assumed that this balance of the two energies during the creation of new space as the universe expands takes place only for times larger than the Planck time. If this assumption is correct, the net energy of the newly created space remains positive for times on the order of Planck time and the positive vacuum energy has to be burrowed from empty space before it is being balanced by gravity. This can happen only within the restrictions of the time-energy uncertainty principle. In this note it is shown that such considerations lead to a vacuum energy density of about 0.3 Nanojoules per cubic meter which has to be compared with the measured value of 0.6 Nanojoules per cubic meter.


2003 ◽  
Vol 18 (10) ◽  
pp. 683-690 ◽  
Author(s):  
GIOVANNI MODANESE

We evaluate the local contribution gμνL of coherent matter with Lagrangian density L to the vacuum energy density. Focusing on the case of superconductors obeying the Ginzburg–Landau equation, we express the relativistic invariant density L in terms of low-energy quantities containing the pairs density. We discuss under which physical conditions the sign of the local contribution of the collective wave function to the vacuum energy density is positive or negative. Effects of this kind can play an important role in bringing the local changes in the amplitude of gravitational vacuum fluctuations — a phenomenon reminiscent of the Casimir effect in QED.


1998 ◽  
Vol 13 (38) ◽  
pp. 3069-3072
Author(s):  
L. C. GARCIA DE ANDRADE

Negative energy densities in spinning matter sources of non-Riemannian ultrastatic traversable wormholes require the spin energy density to be higher than the negative pressure or the radial tension. Since the radial tension necessary to support wormholes is higher than the spin density in practice, it seems very unlikely that wormholes supported by torsion may exist in nature. This result corroborates earlier results by Soleng against the construction of the closed time-like curves (CTC) in space–time geometries with spin and torsion. It also agrees with earlier results by Kerlick according to which Einstein–Cartan (EC) gravity torsion sometimes enhance the gravitational collapse instead of avoiding it.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Harold White ◽  
Jerry Vera ◽  
Arum Han ◽  
Alexander R. Bruccoleri ◽  
Jonathan MacArthur

AbstractWhile conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1 $$\upmu $$ μ m diameter sphere centrally located in a 4 $$\upmu $$ μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document