scholarly journals Hawking-Moss transition with a black hole seed

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Ruth Gregory ◽  
Ian G. Moss ◽  
Naritaka Oshita ◽  
Sam Patrick

Abstract We extend the concept of Hawking-Moss, or up-tunnelling, transitions in the early universe to include black hole seeds. The black hole greatly enhances the decay amplitude, however, order to have physically consistent results, we need to impose a new condition (automatically satisfied for the original Hawking-Moss instanton) that the cosmological horizon area should not increase during tunnelling. We motivate this conjecture physically in two ways. First, we look at the energetics of the process, using the formalism of extended black hole thermodynamics; secondly, we extend the stochastic inflationary formalism to include primordial black holes. Both of these methods give a physical substantiation of our conjecture.

2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 372-378
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov

In this paper, the merger rate of black holes in a cluster of primordial black holes (PBHs) is investigated. The clusters have characteristics close to those of typical globular star clusters. A cluster that has a wide mass spectrum ranging from 10−2 to 10M⊙ (Solar mass) and contains a massive central black hole of the mass M•=103M⊙ is considered. It is shown that in the process of the evolution of cluster, the merger rate changed significantly, and by now, the PBH clusters have passed the stage of active merging of the black holes inside them.


2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2020 ◽  
Vol 501 (1) ◽  
pp. 1426-1439
Author(s):  
Bernard Carr ◽  
Sebastien Clesse ◽  
Juan García-Bellido

ABSTRACT If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the cosmological baryon-to-photon ratio ∼10−9, which suggests a scenario in which a baryon asymmetry is produced efficiently in the outgoing shock around each PBH and then propagates to the rest of the Universe. We suggest that the temperature increase in the shock provides the ingredients for hotspot electroweak baryogenesis. This also explains why baryons and DM have comparable densities, the precise ratio depending on the size of the PBH relative to the cosmological horizon at formation. The observed value of the collapse fraction and baryon asymmetry depends on the amplitude of the curvature fluctuations that generate the PBHs and may be explained by an anthropic selection effect associated with the existence of galaxies. We propose a scenario in which the quantum fluctuations of a light stochastic spectator field during inflation generate large curvature fluctuations in some regions, with the stochasticity of this field providing the basis for the required selection. Finally, we identify several observational predictions of our scenario that should be testable within the next few years. In particular, the PBH mass function could extend to sufficiently high masses to explain the black hole coalescences observed by LIGO/Virgo.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Author(s):  
Andrew W Beckwith

We are using information from a paper deriving a Lorentz-violating energy-momentum relation entailing an exact mo_mentum cutof as stated by G. Salesi . Salesi in his work allegedly defines Pre Planckian physics, whereas we restrict our given application to GW generation and DE formation in the first 10^-39s to 10^-33s or so seconds in the early universe. This procedure is inacted due to an earlier work whereas referees exhibited puzzlement as to the physical mechanism for release of Gravitons in the very early universe. The calculation is meant to be complementary to work done in the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, and also a calculation for Black hole destruction as outlined by Karen Freeze, et. al. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes but we claim that this destruction is directly linked to a Lorentz violating energy-momentum G. Salesi derived, which we adopt, with a mass m added in the G. Salesi energy momentum results proportional to a tiny graviton mass, times the number of gravitons in the first 10^-43 seconds


2005 ◽  
Vol 192 ◽  
pp. 263-268
Author(s):  
V.V. Tikhomirov ◽  
S.E. Yuralevich

SummaryPrimordial black holes (PBHs) of microscopical size can completely absorb neutron stars (NSs) and white dwarfs (WDs) for less than the Hubble time. NS absorption is accompanied by inverse URCA process giving rise to emission of antineutrino. However considerable part of these antineutrino fails to escape NS being drawn into the growing black hole by accreting NS matter. The final stage of dense WD absorption is accompanied by 1051 erg neutrino burst able to ignite nuclear burning giving rise to supernova-like WD explosion.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
George Hulsey ◽  
Shamit Kachru ◽  
Sungyeon Yang ◽  
Max Zimet

Abstract We study non-supersymmetric extremal black hole excitations of 4d $$ \mathcal{N} $$ N = 2 supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by Denef and Douglas [1] to answer these questions.


1993 ◽  
Vol 08 (27) ◽  
pp. 2593-2605
Author(s):  
F. BELGIORNO ◽  
A.S. CATTANEO ◽  
F. FUCITO ◽  
M. MARTELLINI

In this paper we reformulate the dilaton-gravity theory of Callan et al. as a new effective conformal field theory which turns out to be a generalization of the so-called SL 2-conformal affine Toda (CAT) theory studied some time ago by Babelon and Bonora. We quantize this model, thus keeping in account the dilaton-gravity quantum effects. We then implement a Renormalization Group analysis to study the black hole thermodynamics and the final state of the Hawking evaporation.


Sign in / Sign up

Export Citation Format

Share Document