scholarly journals 𝒩 = 2 dualities and Z-extremization in three dimensions

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study duality in 𝒩 = 2 supersymmetric gauge theories in three dimensions. Specifically, we consider a duality due to Aharony involving unitary and symplectic gauge groups, which is similar to Seiberg duality in four dimensions, as well as related dualities involving Chern-Simons terms. These theories have the possibility of non trivial anomalous dimensions for the chiral multiplets and were previously difficult to examine. We use a matrix model to compute the partition functions on both sides of the duality, deformed by real mass and FI terms. The results provide strong evidence for the validity of the proposed dualities. We also comment on a recent proposal for recovering the exact IR conformal dimensions in such theories using localization.

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zhihao Duan ◽  
Kimyeong Lee ◽  
June Nahmgoong ◽  
Xin Wang

Abstract We study twisted circle compactification of 6d (2, 0) SCFTs to 5d $$ \mathcal{N} $$ N = 2 supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6d point of view respectively. The first is based on the blowup equations for the instanton partition function, from which in particular we determine explicitly the one-instanton contribution for all simple Lie groups. The second is based on the modular bootstrap program, and we propose a novel modular ansatz for the twisted elliptic genera that transform under the congruence subgroups Γ0(N) of SL(2, ℤ). We conjecture a vanishing bound for the refined Gopakumar-Vafa invariants of the genus one fibered Calabi-Yau threefolds, upon which one can determine the twisted elliptic genera recursively. We use our results to obtain the 6d Cardy formulas and find universal behaviour for all simple Lie groups. In addition, the Cardy formulas remain invariant under the twist once the normalization of the compact circle is taken into account.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550203 ◽  
Author(s):  
George Savvidy

In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ben Heidenreich ◽  
Jacob McNamara ◽  
Miguel Montero ◽  
Matthew Reece ◽  
Tom Rudelius ◽  
...  

Abstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Aditya Dwivedi ◽  
Siddharth Dwivedi ◽  
Bhabani Prasad Mandal ◽  
Pichai Ramadevi ◽  
Vivek Kumar Singh

AbstractThe entanglement entropy of many quantum systems is difficult to compute in general. They are obtained as a limiting case of the Rényi entropy of index m, which captures the higher moments of the reduced density matrix. In this work, we study pure bipartite states associated with S3 complements of a two-component link which is a connected sum of a knot $$ \mathcal{K} $$ K and the Hopf link. For this class of links, the Chern-Simons theory provides the necessary setting to visualise the m-moment of the reduced density matrix as a three-manifold invariant Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ), which is the partition function of $$ {M}_{{\mathcal{K}}_m} $$ M K m . Here $$ {M}_{{\mathcal{K}}_m} $$ M K m is a closed 3-manifold associated with the knot $$ \mathcal{K} $$ K m, where $$ \mathcal{K} $$ K m is a connected sum of m-copies of $$ \mathcal{K} $$ K (i.e., $$ \mathcal{K} $$ K #$$ \mathcal{K} $$ K . . . #$$ \mathcal{K} $$ K ) which mimics the well-known replica method. We analayse the partition functions Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SU(2) and SO(3) gauge groups, in the limit of the large Chern-Simons coupling k. For SU(2) group, we show that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) can grow at most polynomially in k. On the contrary, we conjecture that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SO(3) group shows an exponential growth in k, where the leading term of ln Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) is the hyperbolic volume of the knot complement S3\$$ \mathcal{K} $$ K m. We further propose that the Rényi entropies associated with SO(3) group converge to a finite value in the large k limit. We present some examples to validate our conjecture and proposal.


1994 ◽  
Vol 09 (35) ◽  
pp. 3255-3266 ◽  
Author(s):  
HITOSHI NISHINO

We show that the action of self-dual supersymmetric Yang-Mills theory in four dimensions, which describes the consistent massless background fields for N=2 superstring, generates the actions for N=1 and N=2 supersymmetric non-Abelian Chern-Simons theories in three dimensions after some dimensional reductions. Since the latters play important roles for supersymmetric integrable models, this result indicates the fundamental significance of the N=2 superstring theory controlling (possibly all) supersymmetric integrable models in lower dimensions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Dongmin Gang ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $$ \mathrm{\mathcal{R}} $$ ℛ . Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-N expansion of supersymmetric partition functions for an infinite class of three-dimensional $$ \mathcal{N} $$ N = 2 SCFTs of class $$ \mathrm{\mathcal{R}} $$ ℛ . We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joseph A. Minahan ◽  
Anton Nedelin

Abstract We consider supersymmetric gauge theories on S5 with a negative Yang-Mills coupling in their large N limits. Using localization we compute the partition functions and show that the pure SU(N) gauge theory descends to an SU(N/2)+N/2× SU(N/2)−N/2× SU(2) Chern-Simons gauge theory as the inverse ’t Hooft coupling is taken to negative infinity for N even. The Yang-Mills coupling of the SU(N/2)±N/2 is positive and infinite, while that on the SU(2) goes to zero. We also show that the odd N case has somewhat different behavior. We then study the SU(N/2)N/2 pure Chern-Simons theory. While the eigenvalue density is only found numerically, we show that its width equals 1 in units of the inverse sphere radius, which allows us to find the leading correction to the free energy when turning on the Yang-Mills term. We then consider USp(2N) theories with an antisymmetric hypermultiplet and Nf< 8 fundamental hypermultiplets and carry out a similar analysis. Along the way we show that the one-instanton contribution to the partition function remains exponentially suppressed at negative coupling for the SU(N) theories in the large N limit.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Matteo Sacchi ◽  
Orr Sela ◽  
Gabi Zafrir

Abstract Building on recent progress in the study of compactifications of 6d (1, 0) superconformal field theories (SCFTs) on Riemann surfaces to 4d$$ \mathcal{N} $$ N = 1 theories, we initiate a systematic study of compactifications of 5d$$ \mathcal{N} $$ N = 1 SCFTs on Riemann surfaces to 3d$$ \mathcal{N} $$ N = 2 theories. Specifically, we consider the compactification of the so-called rank 1 Seiberg $$ {E}_{N_f+1} $$ E N f + 1 SCFTs on tori and tubes with flux in their global symmetry, and put the resulting 3d theories to various consistency checks. These include matching the (usually enhanced) IR symmetry of the 3d theories with the one expected from the compactification, given by the commutant of the flux in the global symmetry of the corresponding 5d SCFT, and identifying the spectrum of operators and conformal manifolds predicted by the 5d picture. As the models we examine are in three dimensions, we encounter novel elements that are not present in compactifications to four dimensions, notably Chern-Simons terms and monopole superpotentials, that play an important role in our construction. The methods used in this paper can also be used for the compactification of any other 5d SCFT that has a deformation leading to a 5d gauge theory.


Sign in / Sign up

Export Citation Format

Share Document