scholarly journals Holographic JT gravity with quartic couplings

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Hemant Rathi ◽  
Dibakar Roychowdhury

Abstract We construct the most general theory of 2D Einstein-dilaton gravity coupled with U(1) gauge fields that contains all the 2-derivative and the 4-derivative interactions allowed by the diffeomorphism invariance. We renormalise the 2D action and obtain the vacuum solution as well as the black hole solution. The vacuum solution in the UV is dominated by Lifshitz2 with dynamical exponent (z = $$ \frac{7}{3} $$ 7 3 ) while on the other hand, the spacetime curvature diverges as we move towards the deep IR limit. We calculate the holographic stress tensor and the central charge for the boundary theory. Our analysis shows that the central charge goes as the inverse power of the coupling associated to 4-derivative interactions. We also compute the Wald entropy for 2D black holes and interpret its near horizon divergence in terms of the density of states. We compare the Wald entropy with the Cardy formula and obtain the eigen value of Virasoro operator (L0) for our model. Finally, we explore the near horizon structure of 2D black holes and calculate the central charge corresponding to the CFT near horizon. We further show that the near horizon CFT may be recast as a 2D Liouville theory with higher derivative corrections. We study the Weyl invariance of this generalised Liouville theory and identify the Weyl anomaly associated to it. We also comment on the classical vacuum structure of the theory.

2012 ◽  
Vol 27 (20) ◽  
pp. 1250111 ◽  
Author(s):  
FANG-FANG YUAN ◽  
YONG-CHANG HUANG

A Liouville formalism was proposed many years ago to account for the black hole entropy. It was recently updated to connect thermodynamics of general black holes, in particular the Hawking temperature, to two-dimensional Liouville theory. This relies on the dimensional reduction to two-dimensional black hole metric. The relevant dilaton gravity model can be rewritten as a Liouville-like theory. We refine the method and give general formulas for the corresponding scalar and energy–momentum tensors in Liouville theory. This enables us to read off the black hole temperature using a relation which was found about three decades ago. Then the range of application is extended to include nonspherical black holes such as neutral and charged black rings, topological black hole and the case coupled to a scalar field. As for the entropy, following previous authors, we invoke the Lagrangian approach to central charge by Cadoni and then use the Cardy formula. The general relevant parameters are also given. This approach is more advantageous than the usual Hamiltonian approach which was used by the old Liouville formalism for black hole entropy.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850109 ◽  
Author(s):  
Muhammad F. A. R. Sakti ◽  
A. Suroso ◽  
Freddy P. Zen

We investigate the Kerr–Newman–NUT black hole solution obtained from Plebański–Demiański solutions with several assumptions. The origin of the microscopic entropy of this black hole is investigated using the conjectured Kerr/CFT correspondence which is originally proposed for extremal Kerr black holes. The isometry of the near-horizon extremal Kerr–Newman–NUT black hole shows that the asymptotic symmetry group may be implemented to compute the central charge of the Virasoro algebra. Furthermore, by assuming the Frolov–Thorne vacuum, the conformal temperatures can be obtained. Then by using the Cardy formula, the microscopic entropy is gained which matches the Bekenstein–Hawking entropy. We also employ the Cardy prescription to find the logarithmic correction of the entropy. Then at limit [Formula: see text], the extremal Reissner–Nordström–NUT solution is recovered and by enhancing with the fibered coordinate we find the five-dimensional (5D) solution. The second dual CFT is applied to this black hole to gain the entropy. Finally, the microscopic entropy is still in agreement with the area law of 5D black hole solution. Hence, the extremal Reissner–Nordström–NUT solution is holographically dual to the CFT.


2008 ◽  
Vol 794 (1-2) ◽  
pp. 28-45 ◽  
Author(s):  
Kwangho Hur ◽  
Seungjoon Hyun ◽  
Hongbin Kim ◽  
Sang-Heon Yi

Author(s):  
Malcolm Perry ◽  
Maria J Rodriguez

Abstract Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and create distinguishing features referred to as soft hair. Amongst these are a left-right pair of Virasoro algebras with associated charges that reproduce the Bekenstein-Hawking entropy for Kerr black holes. In this paper we show that if one adds a negative cosmological constant, there is a similar set of infinitesimal diffeomorphisms that act non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a central charge. Adding a boundary counterterm, justified to achieve integrability, leads to well-defined central charges with cL = cR. The macroscopic area law for Kerr-AdS black holes follows from the assumption of a Cardy formula governing the black hole microstates.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Hao Xu ◽  
Yen Chin Ong

Abstract Hořava–Lifshitz (HL) gravity was formulated in hope of solving the non-renormalization problem in Einstein gravity and the ghost problem in higher derivative gravity theories by violating Lorentz invariance. In this work we consider the spherically symmetric neutral AdS black hole evaporation process in HL gravity in various spacetime dimensions d, and with detailed balance violation parameter $$0\leqslant \epsilon ^2\leqslant 1$$0⩽ϵ2⩽1. We find that the lifetime of the black holes under Hawking evaporation is dimensional dependent, with $$d=4,5$$d=4,5 behave differently from $$d\geqslant 6$$d⩾6. For the case of $$\epsilon =0$$ϵ=0, in $$d=4,5$$d=4,5, the black hole admits zero temperature state, and the lifetime of the black hole is always infinite. This phenomenon obeys the third law of black hole thermodynamics, and implies that the black holes become an effective remnant towards the end of the evaporation. As $$d\geqslant 6$$d⩾6, however, the lifetime of black hole does not diverge with any initial black hole mass, and it is bounded by a time of the order of $$\ell ^{d-1}$$ℓd-1, similar to the case of Schwarzschild-AdS in Einstein gravity (which corresponds to $$\epsilon ^2=1$$ϵ2=1), though for the latter this holds for all $$d\geqslant 4$$d⩾4. The case of $$0<\epsilon ^2<1$$0<ϵ2<1 is also qualitatively similar with $$\epsilon =0$$ϵ=0.


2009 ◽  
Vol 122 (2) ◽  
pp. 355-384 ◽  
Author(s):  
T. Azeyanagi ◽  
G. Compere ◽  
N. Ogawa ◽  
Y. Tachikawa ◽  
S. Terashima

1992 ◽  
Vol 07 (15) ◽  
pp. 3403-3433 ◽  
Author(s):  
Y. KITAZAWA

We review the physical properties of random surfaces from the view point of the continuum Liouville theory. We shall summarize physical motivations of this subject and the field-theoretic treatment of the random surfaces. In the case of subcritical strings propagating in less than two dimensions, a complete understanding has been obtained recently through matrix models. We discuss the Liouville theory understanding of these results by studying the correlation functions. We also discuss promising avenues of further investigations such as black holes in 2-dimensional gravity and 3- and 4-dimensional string theory which may be relevant to Ising 3 and QCD 4.


1999 ◽  
Vol 16 (3) ◽  
pp. 164-166
Author(s):  
Chang-xue Deng ◽  
Chao-guang Huang

2019 ◽  
Vol 34 (35) ◽  
pp. 1930017 ◽  
Author(s):  
Antonio Gallerati

We perform a detailed analysis of black hole solutions in supergravity models. After a general introduction on black holes in general relativity and supersymmetric theories, we provide a detailed description of ungauged extended supergravities and their dualities. Therefore, we analyze the general form of black hole configurations for these models, their near-horizon behavior and characteristic of the solution. An explicit construction of a black hole solution with its physical implications is given for the STU-model. The second part of this review is dedicated to gauged supergravity theories. We describe a step-by-step gauging procedure involving the embedding tensor formalism to be used to obtain a gauged model starting from an ungauged one. Finally, we analyze general black hole solutions in gauged models, providing an explicit example for the [Formula: see text], [Formula: see text] case. A brief review on special geometry is also provided, with explicit results and relations for supersymmetric black hole solutions.


Sign in / Sign up

Export Citation Format

Share Document