scholarly journals Comments on D3-brane holography

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Amit Giveon ◽  
David Kutasov

Abstract We revisit the idea that the quantum dynamics of open strings ending on N D3-branes in the large N limit can be described at large ‘t Hooft coupling by classical closed string theory in the background created by the D3-branes in asymptotically flat spacetime. We study the resulting thermodynamics and compute the Hagedorn temperature and other properties of the D3-brane worldvolume theory in this regime. We also consider the theory in which the D3-branes are replaced by negative branes and show that its thermodynamics is well behaved. We comment on the idea that this theory can be thought of as an irrelevant deformation of $$ \mathcal{N} $$ N = 4 SYM, and on its relation to $$ T\overline{T} $$ T T ¯ deformed CFT2.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
William Donnelly ◽  
Yikun Jiang ◽  
Manki Kim ◽  
Gabriel Wong

Abstract Progress in identifying the bulk microstate interpretation of the Ryu-Takayanagi formula requires understanding how to define entanglement entropy in the bulk closed string theory. Unfortunately, entanglement and Hilbert space factorization remains poorly understood in string theory. As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A-model in the context of Gopakumar-Vafa duality. We will present our results in two separate papers. In this work, we consider the bulk closed string theory on the resolved conifold and give a self-consistent factorization of the closed string Hilbert space using extended TQFT methods. We incorporate our factorization map into a Frobenius algebra describing the fusion and splitting of Calabi-Yau manifolds, and find string edge modes transforming under a q-deformed surface symmetry group. We define a string theory analogue of the Hartle-Hawking state and give a canonical calculation of its entanglement entropy from the reduced density matrix. Our result matches with the geometrical replica trick calculation on the resolved conifold, as well as a dual Chern-Simons theory calculation which will appear in our next paper [1]. We find a realization of the Susskind-Uglum proposal identifying the entanglement entropy of closed strings with the thermal entropy of open strings ending on entanglement branes. We also comment on the BPS microstate counting of the entanglement entropy. Finally we relate the nonlocal aspects of our factorization map to analogous phenomenon recently found in JT gravity.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Niccolò Cribiori ◽  
Susha Parameswaran ◽  
Flavio Tonioni ◽  
Timm Wrase

Abstract The study of non-supersymmetric string theories is shedding light on an important corner of the string landscape and might ultimately explain why, so far, we did not observe supersymmetry in our universe. We review how misaligned supersymmetry in closed-string theories leads to a cancellation between bosons and fermions even in non-supersymmetric string theories. We then show that the same cancellation takes place for open strings by studying an anti-Dp-brane placed on top of an Op-plane in type II string theory. Misaligned supersymmetry consists in cancellations between bosons and fermions at different energy levels, in such a way that the averaged number of states grows at a rate dominated by a factor $$ {\mathrm{e}}^{C_{\mathrm{e}\mathrm{ff}}\sqrt{n}} $$ e C eff n , with Ceff< Ctot, where Ctot is the inverse Hagedorn temperature. We prove the previously conjectured complete cancellation, i.e. we prove that Ceff = 0, for a vast class of models.


2005 ◽  
Vol 20 (24) ◽  
pp. 5513-5656 ◽  
Author(s):  
ASHOKE SEN

In this review we describe our current understanding of the properties of open string tachyons on an unstable D-brane or brane–antibrane system in string theory. The various string theoretic methods used for this study include techniques of two-dimensional conformal field theory, open string field theory, boundary string field theory, noncommutative solitons, etc. We also describe various attempts to understand these results using field theoretic methods. These field theory models include toy models like singular potential models and p-adic string theory, as well as more realistic version of the tachyon effective action based on Dirac–Born–Infeld type action. Finally we study closed string background produced by the "decaying" unstable D-branes, both in the critical string theory and in the two-dimensional string theory, and describe the open string completeness conjecture that emerges out of this study. According to this conjecture the quantum dynamics of an unstable D-brane system is described by an internally consistent quantum open string field theory without any need to couple the system to closed strings. Each such system can be regarded as a part of the "hologram" describing the full string theory.


2013 ◽  
Vol 28 (24) ◽  
pp. 1350116 ◽  
Author(s):  
B. SATHIAPALAN

We formulate the Exact Renormalization Group on the string worldsheet for closed string backgrounds. The same techniques that were used for open strings are used here. There are some subtleties. One is that holomorphic factorization of the closed string vertex operators does not hold in the presence of a cutoff on the Euclidean worldsheet. This introduces extra terms in the Lagrangian at the cutoff scale and they turn out to be crucial for implementing gauge invariance. This naive generalization from open string to closed string requires a massive graviton and the gauge symmetry is Abelian, just as in open string theory. Interestingly, it turns out that if one introduces a nondynamical background metric (as in background field formalism) and combines a gauge transformation on the field with a transformation on the coordinates and background metric, the graviton can be massless. Some examples of background coordinate covariant equations are worked out explicitly. A preliminary discussion of massive modes, massive gauge transformations and the role of worldsheet regulator terms is given. Some of the gauge transformations can be given a geometric meaning if space–time is assumed to be complex at some level.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract We uncover a Kawai-Lewellen-Tye (KLT)-type factorization of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The winding and momentum closed string quantum numbers map respectively to the integer and fractional winding quantum numbers of open strings ending on a D-brane array localized in the compactified directions. The closed string amplitudes factorize into products of open string scattering amplitudes with the open strings ending on a D-brane configuration determined by closed string data.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nabamita Banerjee ◽  
Karan Fernandes ◽  
Arpita Mitra

Abstract We study the effect of electromagnetic interactions on the classical soft theorems on an asymptotically AdS background in 4 spacetime dimensions, in the limit of a small cosmological constant or equivalently a large AdS radius l. This identifies 1/l2 perturbative corrections to the known asymptotically flat spacetime leading and subleading soft factors. Our analysis is only valid to leading order in 1/l2. The leading soft factor can be expected to be universal and holds beyond tree level. This allows us to derive a 1/l2 corrected Ward identity, following the known equivalence between large gauge Ward identities and soft theorems in asymptotically flat spacetimes.


2003 ◽  
Vol 669 (1-2) ◽  
pp. 78-102 ◽  
Author(s):  
Hyeonjoon Shin ◽  
Katsuyuki Sugiyama ◽  
Kentaroh Yoshida

Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 831-838
Author(s):  
Massimo Fioranelli ◽  
Alireza Sepehri ◽  
Maria Grazia Roccia ◽  
Mahdieh Ghasemi

Abstract Recently, a method for calculating the quantum spectrum of black holes has been proposed. We show that this method can be applied for radiations of 4 + n - dimensional water around a DNA. In this model, DNA acts like a black hole and produces a curved space-time in a water around it. In these conditions, molecules of water in four dimensional universe are entangled with some DNA-like structures in extra dimension. Consequently, the effects of structures of water in extra dimensions can be observed in four dimensions. The entangled structures emit some quantum spectrum which can be transmitted to pure waters. These waves produce a curved space-time in pure water and make an entanglement between structure of water on four and DNA-like structures in extra dimensions. As a result, some signatures of DNAs can be observed in pure water. This model helps us to understand the reason for the emergence of life on the earth. To explain the model better, we unify Darwin’s theory with string theory in a new Darwinian’s string theory. In this theory, a zero dimensional manifold decays into two types of closed strings. One type decays into open strings and then these strings join to each other and form cosmos. Another type decays into open strings which form biological matters like DNAs and molecules of water in universe and anti-DNAs and anti-water in anti-universe. Thus, DNAs and molecules water are connected to each other and anti-DNAs and molecules of anti-water in anti-universe through some closed strings. These strings helps to molecules of water to store their informations in extra dimension and have long time memory. Because, information that are transformed into extra dimensions through closed strings, could be returned into universe. Also, these closed strings could have the main role in DNA transduction. Because, they connect two tubes one including water and DNA and another pure water in universe to two tubes including anti-DNA and water in anti-universe and transform properties of DNA into pure water. As a result, Darwinian string theory can confirm both water memory and DNA transduction. Finally, this theory response to this question that why memory of water couldnt remain for a long time. In this model, open strings which connects atoms in universe with anti-atoms in anti-universe interact with open strings which connects molecules of water and anti-water and decrease their entanglement. This causes that exchanging information between water and anti-water decreases and memory is dis-appeared.


Sign in / Sign up

Export Citation Format

Share Document