scholarly journals Leptogenesis, fermion masses and mixings in a SUSY SU(5) GUT with D4 flavor symmetry

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
M. Miskaoui ◽  
M. A. Loualidi

Abstract We propose a model of fermion masses and mixings based on SU(5) grand unified theory (GUT) and a D4 flavor symmetry. This is a highly predictive 4D SU(5) GUT with a flavor symmetry that does not contain a triplet irreducible representation. The Yukawa matrices of quarks and charged leptons are obtained after integrating out heavy messenger fields from renormalizable superpotentials while neutrino masses are originated from the type I seesaw mechanism. The group theoretical factors from 24- and 45-dimensional Higgs fields lead to ratios between the Yukawa couplings in agreement with data, while the dangerous proton decay operators are highly suppressed. By performing a numerical fit, we find that the model captures accurately the mixing angles, the Yukawa couplings and the CP phase of the quark sector at the GUT scale. The neutrino masses are generated at the leading order with the prediction of trimaximal mixing while an additional effective operator is required to account for the baryon asymmetry of the universe (BAU). The model is remarkably predictive because only the normal neutrino mass ordering and the lower octant of the atmospheric angle are allowed while the CP conserving values of the Dirac neutrino phase δCP are excluded. Moreover, the predicted values of the effective Majorana mass mββ can be tested at future neutrinoless double beta decay experiments. An analytical and a numerical study of the BAU via the leptogenesis mechanism is performed. We focused on the regions of parameter space where leptogenesis from the lightest right-handed neutrino is successfully realized. Strong correlations between the parameters of the neutrino sector and the observed BAU are obtained.

2015 ◽  
Vol 30 (21) ◽  
pp. 1550117 ◽  
Author(s):  
Vo Van Vien ◽  
Hoang Ngoc Long

We propose a 3-3-1 model with neutral fermions based on [Formula: see text] flavor symmetry responsible for fermion masses and mixings with nonzero [Formula: see text]. To get realistic neutrino mixing, we just add a new [Formula: see text] triplet being in [Formula: see text] under [Formula: see text]. The neutrinos get small masses from two [Formula: see text] antisextets and one [Formula: see text] triplet. The model can fit the present data on neutrino masses and mixing as well as the effective mass governing neutrinoless double beta decay. Our results show that the neutrino masses are naturally small and a little deviation from the tri-bimaximal neutrino mixing form can be realized. The Dirac CP violation phase [Formula: see text] is predicted to either [Formula: see text] or [Formula: see text] with [Formula: see text].


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ya Zhao ◽  
Hong-Hao Zhang

Abstract We study the textures of SM fermion mass matrices and their mixings in a supersymmetric adjoint SU(5) Grand Unified Theory with modular S4 being the horizontal symmetry. The Yukawa entries of both quarks and leptons are expressed by modular forms with lower weights. Neutrino sector has an adjoint SU(5) representation 24 as matter superfield, which is a triplet of S4. The effective light neutrino masses is generated through Type-III and Type-I seesaw mechanism. The only common complex parameter in both charged fermion and neutrino sectors is modulus τ . Down-type quarks and charged leptons have the same joint effective operators with adjoint scalar in them, and their mass discrepancy in the same generation depends on Clebsch-Gordan factor. Especially for the first two generations the respective Clebsch-Gordan factors made the double Yukawa ratio 𝒴d𝒴μ/𝒴e𝒴s = 12, in excellent agreement with the experimental result. We reproduce proper CKM mixing parameters and all nine Yukawa eigenvalues of quarks and charged leptons. Neutrino masses and MNS parameters are also produced properly with normal ordering is preferred.


2001 ◽  
Vol 16 (32) ◽  
pp. 5101-5199 ◽  
Author(s):  
ISABELLA MASINA

We review the problem of neutrino masses and mixings in the context of grand unified theories. After a brief summary of the present experimental status of neutrino physics, we describe how the see-saw mechanism can automatically account for the large atmospheric mixing angle. We provide two specific examples where this possibility is realized by means of a flavor symmetry. We then review in some detail the various severe problems which plague minimal GUT models (like the doublet–triplet splitting and proton-decay) and which force us to investigate the possibility of constructing more elaborate but realistic models. We then show an example of a quasirealistic SUSY SU(5) model which, by exploiting the crucial presence of an Abelian flavor symmetry, does not require any fine-tuning and predicts a satisfactory phenomenology with respect to coupling unification, fermion masses and mixings and bounds from proton decay.


2006 ◽  
Vol 21 (21) ◽  
pp. 1629-1646 ◽  
Author(s):  
STEPHEN M. WEST

We review a class of supersymmetric models in which the light neutrino masses result from higher-dimensional supersymmetry-breaking terms in the MSSM super- and Kähler-potentials. The mechanism used in these models is closely related to the Giudice–Masiero mechanism for the MSSM μ parameter and leads to TeV-scale right-handed neutrino and sneutrino states. In these models, the dominant contribution to the light neutrino (Majorana) mass matrix is a one-loop term with a sub-dominant tree-level "seesaw" contribution. It is also shown that it is possible to construct a natural model of TeV-scale leptogenesis via the resonant behavior of the one-loop self-energy contribution to the right-handed neutrino (Ni) decay. This model addresses the primary problems of previous phenomenological studies of low-energy leptogenesis: a rational for TeV-scale right-handed neutrinos with small Yukawa couplings; the origin of the tiny, but non-zero mass splitting required between at least two Ni masses; and the necessary non-trivial breaking of flavor symmetries in the right-handed neutrino sector.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
V. Suryanarayana Mummidi ◽  
Ketan M. Patel

Abstract A non-supersymmetric renormalizable SO(10) model is investigated for its viability in explaining the observed fermion masses and mixing parameters along with the baryon asymmetry produced via thermal leptogenesis. The Yukawa sector of the model consists of complex 10H and $$ {\overline{126}}_H $$ 126 ¯ H scalars with a Peccei-Quinn like symmetry and it leads to strong correlations among the Yukawa couplings of all the standard model fermions including the couplings and masses of the right-handed (RH) neutrinos. The latter implies the necessity to include the second lightest RH neutrino and flavor effects for the precision computation of leptogenesis. We use the most general density matrix equations to calculate the temperature evolution of flavoured leptonic asymmetry. A simplified analytical solution of these equations, applicable to the RH neutrino spectrum predicted in the model, is also obtained which allows one to fit the observed baryon to photon ratio along with the other fermion mass observables in a numerically efficient way. The analytical and numerical solutions are found to be in agreement within a factor of $$ \mathcal{O}(1) $$ O 1 . We find that the successful leptogenesis in this model does not prefer any particular value for leptonic Dirac and Majorana CP phases and the entire range of values of these observables is found to be consistent. The model specifically predicts (a) the lightest neutrino mass $$ {m}_{v_1} $$ m v 1 between 2–8 meV, (b) the effective mass of neutrinoless double beta decay mββ between 4–10 meV, and (c) a particular correlation between the Dirac and one of the Majorana CP phases.


2007 ◽  
Vol 2007 ◽  
pp. 1-17 ◽  
Author(s):  
Marco Picariello

We compute the effect of nondiagonal neutrino mass inli→ljγin Supersymmetry (SUSY) theories with nontrivial quark-lepton complementarity and a flavor symmetry. The correlation matrixVM=UCKMUPMNSis such that its (1,3) entry, as preferred by the present experimental data, is zero. We do not assume thatVMis bimaximal. Quark-lepton complementarity and the flavor symmetry strongly constrain the theory and we obtain a clear prediction for the contribution toμ→eγand theτdecaysτ→eγandτ→μγ. If the Dirac neutrino Yukawa couplings are degenerate but the low-energy neutrino masses are not degenerate, then the lepton decays are related among them by theVMentries. On the other hand, if the Dirac neutrino Yukawa couplings are hierarchical or the low-energy neutrino masses are degenerate, then the prediction for the lepton decays comes from theUCKMhierarchy.


2020 ◽  
Vol 35 (38) ◽  
pp. 2050311
Author(s):  
V. V. Vien

We propose a renormalizable [Formula: see text] extension of the Standard model with [Formula: see text] symmetry that leads to the successful cobimaximal lepton mixing ansatz, thus providing a predictive explanation for leptonic mixing observables. The smallness of the active neutrino masses and neutrino masses ordering are produced by the type-I seesaw mechanism at the tree-level. The obtained physical parameters are well consistent with the global fit of neutrino oscillation.1 The model is predictive in the sense that it reproduces the experimental values of neutrino parameters in which the reactor neutrino mixing angle [Formula: see text] get the best-fit value and the solar and atmospheric neutrino mixing angles have little deviations from the best-fit values given in Ref. 1, however, they are consistent with the other experimental results.[Formula: see text] The effective neutrino masses governing the neutrinoless double beta decay is predicted to be [Formula: see text] for normal hierarchy and [Formula: see text] for inverted hierarchy which are well consistent with the recent experimental limits on neutrinoless double beta decay.


2017 ◽  
Vol 2017 (12) ◽  
Author(s):  
Francisco J. de Anda ◽  
Stephen F. King ◽  
Elena Perdomo

Abstract We propose a Grand Unified Theory of Flavour, based on SO(10) together with a non-Abelian discrete group S 4, under which the unified three quark and lepton 16-plets are unified into a single triplet 3′. The model involves a further discrete group ℤ 4 R  × ℤ 4 3 which controls the Higgs and flavon symmetry breaking sectors. The CSD2 flavon vacuum alignment is discussed, along with the GUT breaking potential and the doublet-triplet splitting, and proton decay is shown to be under control. The Yukawa matrices are derived in detail, from renormalisable diagrams, and neutrino masses emerge from the type I seesaw mechanism. A full numerical fit is performed with 15 input parameters generating 19 presently constrained observables, taking into account supersymmetry threshold corrections. The model predicts a normal neutrino mass ordering with a CP oscillation phase of 260°, an atmospheric angle in the first octant and neutrinoless double beta decay with m ββ = 11 meV. We discuss N 2 leptogenesis, which fixes the second right-handed neutrino mass to be M 2 ≃ 2 × 1011 GeV, in the natural range predicted by the model.


2017 ◽  
Vol 32 (16) ◽  
pp. 1750093 ◽  
Author(s):  
J. C. Montero ◽  
V. Pleitez ◽  
B. L. Sánchez-Vega ◽  
M. C. Rodriguez

We build a supersymmetric version with [Formula: see text] gauge symmetry, where [Formula: see text] is a new charge and [Formula: see text] and [Formula: see text] are the usual baryonic and leptonic numbers. The model has three right-handed neutrinos with identical [Formula: see text] charges, and can accommodate all fermion masses at the tree level. In particular, the type I seesaw mechanism is implemented for the generation of the active neutrino masses. We obtain the mass spectra of all sectors and for the scalar one we also give the flat directions allowed by the model.


Sign in / Sign up

Export Citation Format

Share Document