scholarly journals The semiclassical gravitational path integral and random matrices (toward a microscopic picture of a dS2 universe)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Dionysios Anninos ◽  
Beatrix Mühlmann

Abstract We study the genus expansion on compact Riemann surfaces of the gravitational path integral $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m in two spacetime dimensions with cosmological constant Λ > 0 coupled to one of the non-unitary minimal models ℳ2m − 1, 2. In the semiclassical limit, corresponding to large m, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a Euclidean saddle for genus h ≥ 2. Upon fixing the area of the metric, the path integral admits a round two-sphere saddle for h = 0. We show that the OPE coefficients for the minimal weight operators of ℳ2m − 1, 2 grow exponentially in m at large m. Employing the sewing formula, we use these OPE coefficients to obtain the large m limit of the partition function of ℳ2m − 1, 2 for genus h ≥ 2. Combining these results we arrive at a semiclassical expression for $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m . Conjecturally, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a completion in terms of an integral over large random Hermitian matrices, known as a multicritical matrix integral. This matrix integral is built from an even polynomial potential of order 2m. We obtain explicit expressions for the large m genus expansion of multicritical matrix integrals in the double scaling limit. We compute invariant quantities involving contributions at different genera, both from a matrix as well as a gravity perspective, and establish a link between the two pictures. Inspired by the proposal of Gibbons and Hawking relating the de Sitter entropy to a gravitational path integral, our setup paves a possible path toward a microscopic picture of a two-dimensional de Sitter universe.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 975
Author(s):  
Irina Aref’eva ◽  
Igor Volovich

It has been shown recently by Saad, Shenker and Stanford that the genus expansion of a certain matrix integral generates partition functions of Jackiw-Teitelboim (JT) quantum gravity on Riemann surfaces of arbitrary genus with any fixed number of boundaries. We use an extension of this integral for studying gas of baby universes or wormholes in JT gravity. To investigate the gas nonperturbatively we explore the generating functional of baby universes in the matrix model. The simple particular case when the matrix integral includes the exponential potential is discussed in some detail. We argue that there is a phase transition in the gas of baby universes.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


1990 ◽  
Vol 237 (3-4) ◽  
pp. 379-385 ◽  
Author(s):  
G. Cristofano ◽  
G. Maiella ◽  
R. Musto ◽  
F. Nicodemi

2001 ◽  
Vol 16 (05) ◽  
pp. 822-855 ◽  
Author(s):  
JUAN MALDACENA ◽  
CARLOS NUÑEZ

In the first part of this paper we find supergravity solutions corresponding to branes on worldvolumes of the form Rd×Σ where Σ is a Riemann surface. These theories arise when we wrap branes on holomorphic Riemann surfaces inside K3 or CY manifolds. In some cases the theory at low energies is a conformal field theory with two less dimensions. We find some non-singular supersymmetric compactifications of M-theory down to AdS5. We also propose a criterion for permissible singularities in supergravity solutions. In the second part of this paper, which can be read independently of the first, we show that there are no non-singular Randall-Sundrum or de-Sitter compactifications for large class of gravity theories.


1993 ◽  
Vol 08 (13) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. BECKER ◽  
M. BECKER

We present the solution of the discrete super-Virasoro constraints to all orders of the genus expansion. Integrating over the fermionic variables we get a representation of the partition function in terms of the one-matrix model. We also obtain the non-perturbative solution of the super-Virasoro constraints in the double scaling limit but do not find agreement between our flows and the known supersymmetric extensions of KdV.


1995 ◽  
Vol 10 (29) ◽  
pp. 4203-4224 ◽  
Author(s):  
TOHRU EGUCHI ◽  
KENTARO HORI ◽  
SUNG-KIL YANG

In this paper we describe in some detail the representation of the topological CP1 model in terms of a matrix integral which we have introduced in a previous article. We first discuss the integrable structure of the CP1 model and show that it is governed by an extension of the one-dimensional Toda hierarchy. We then introduce a matrix model which reproduces the sum over holomorphic maps from arbitrary Riemann surfaces onto CP1. We compute intersection numbers on the moduli space of curves using a geometrical method and show that the results agree with those predicted by the matrix model. We also develop a Landau-Ginzburg (LG) description of the CP1 model using a superpotential eX + et0,Q e-X given by the Lax operator of the Toda hierarchy (X is the LG field and t0,Q is the coupling constant of the Kähler class). The form of the superpotential indicates the close connection between CP1 and N=2 supersymmetric sine-Gordon theory which was noted sometime ago by several authors. We also discuss possible generalizations of our construction to other manifolds and present an LG formulation of the topological CP2 model.


1991 ◽  
Vol 06 (12) ◽  
pp. 1061-1068
Author(s):  
A.P. DEMICHEV ◽  
M.Z. IOFA

We discuss the difference between the Lagrange and the operator BRST quantization in string theory on Riemann surfaces of higher genus. An example of the harmonic gauge yielding the non-anomalous BRST Ward identity in the path integral Lagrange approach is studied in detail.


1994 ◽  
Vol 09 (31) ◽  
pp. 2893-2902 ◽  
Author(s):  
TOHRU EGUCHI ◽  
SUNG-KIL YANG

We discuss the topological CP 1 model which consists of the holomorphic maps from Riemann surfaces onto CP 1. We construct a large-N matrix model which reproduces precisely the partition function of the CP 1 model at all genera of Riemann surfaces. The action of our matrix model has the form [Formula: see text] where M is an N × N Hermitian matrix and tn,P(tn,Q), (n = 0, 1, 2, …) are the coupling constants of the nth descendant of the puncture (Kähler) operator.


Sign in / Sign up

Export Citation Format

Share Document