High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications

2012 ◽  
Vol 32 (2) ◽  
pp. 453-476 ◽  
Author(s):  
Fabian Khateb ◽  
Firat Kaçar ◽  
Nabhan Khatib ◽  
David Kubánek
2019 ◽  
Author(s):  
Qisheng Zhang ◽  
Wenhao Li ◽  
Feng Guo ◽  
Zhenzhong Yuan ◽  
Shuaiqing Qiao ◽  
...  

Abstract. In the past few decades, with the continuous advancement of technology, seismic-electrical instruments have developed rapidly. However, complex and harsh exploration environments have put forward higher requirements and severe challenges for traditional geophysical exploration methods and instruments. Therefore, it is extremely urgent to develop new high-precision exploration instruments and data acquisition systems. In this study, a new distributed seismic-electrical hybrid acquisition station is developed using system-on-a-programmable-chip (SoPC) technology. The acquisition station hardware includes an analog board and a main control board. The analog board uses a signal conditioning circuit and a 24-bit analog-to-digital converter (ADS1271) to achieve high-precision data acquisition, while the main control board uses a low-power SoPC chip to enable high-speed stable data transmission. Moreover, the data transmission protocol for the acquisition station was designed, an improved low-voltage differential signaling data transmission technology was independently developed, and a method to enhance the precision of synchronous acquisition was studied in depth. These key technologies, which were developed for the acquisition station, were integrated into the SoPC of the main control board. Testing results indicate that the synchronization precision of the acquisition station is better than 200 ns, and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable. Simultaneously, the developed acquisition station has the advantages of low noise, large dynamic range, low power consumption, etc., and it can achieve high-precision hybrid acquisition of seismic-electrical data.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


2006 ◽  
Vol 15 (05) ◽  
pp. 701-717 ◽  
Author(s):  
HSIAO WEI SU ◽  
YICHUANG SUN

A high-frequency highly linear tunable CMOS multiple-output operational transconductance amplifier (MO-OTA) for fully balanced current-mode OTA and capacitor (OTA-C) filters is presented. The MO-OTA is based on the cross-coupled pairs at the input and provides two pairs of differential outputs. A simple common-mode feedback (CMFB) circuit to stabilize the DC output levels of the MO-OTA is also proposed and two such CMFB circuits are used by the MO-OTA. The proposed MO-OTA is suitable for relatively low voltage (2.5 V) applications as its circuit has only two MOS transistors between the supply and ground rails. Simulated in a TSMC 0.25 μm CMOS process using PSpice, the MO-OTA has at least ± 0.3 V linear differential input signal swing with a single 2.5 V power supply and operates up to 1 GHz frequency. The MO-OTA has a THD less than -46 dB for a differential input voltage of 0.9 Vp-p at 10 MHz, dynamic range (DR) at THD = -46 dB is over 50 dB, and power consumption (with the common-mode feedback circuit) is below 8 mW for the whole tuning range. A fully balanced multiple loop feedback current-mode OTA-C filter example using the proposed MO-OTA is presented. This example also shows that the current-mode follow-the-leader-feedback (FLF) structure can achieve good performances for OTA-C filter design.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ziad Alsibai ◽  
Salma Bay Abo Dabbous

A new ultra-low-voltage (LV) low-power (LP) bulk-driven quasi-floating-gate (BD-QFG) operational transconductance amplifier (OTA) is presented in this paper. The proposed circuit is designed using 0.18 μm CMOS technology. A supply voltage of ±0.3 V and a quiescent bias current of 5 μA are used. The PSpice simulation result shows that the power consumption of the proposed BD-QFG OTA is 13.4 μW. Thus, the circuit is suitable for low-power applications. In order to confirm that the proposed BD-QFG OTA can be used in analog signal processing, a BD-QFG OTA-based diodeless precision rectifier is designed as an example application. This rectifier employs only two BD-QFG OTAs and consumes only 26.8 μW.


Sign in / Sign up

Export Citation Format

Share Document