Insertion torque values and success rates for paramedian insertion of orthodontic mini-implants

Author(s):  
Bruno Di Leonardo ◽  
Björn Ludwig ◽  
Jörg Alexander Lisson ◽  
Luca Contardo ◽  
Rossano Mura ◽  
...  
2008 ◽  
Vol 78 (6) ◽  
pp. 1065-1070 ◽  
Author(s):  
Benedict Wilmes ◽  
Yu-Yu Su ◽  
Dieter Drescher

Abstract Objective: To analyze the impact of the insertion angle on the primary stability of mini-implants. Materials and Methods: A total of 28 ilium bone segments of pigs were embedded in resin. Two different mini-implant sizes (Dual-Top Screw 1.6 × 8 mm and 2.0 × 10 mm) were inserted at seven different angles (30°, 40°, 50°, 60°, 70°, 80°, and 90°). The insertion torque was recorded to assess primary stability. In each bone, five Dual-Top Screws were used to compensate for differences in local bone quality. Results: The angle of mini-implant insertion had a significant impact on primary stability. The highest insertion torque values were measured at angles between 60° and 70° (63.8° for Dual-Top 1.6 mm and 66.7° for Dual-Top 2.0 mm). Very oblique insertion angles (30°) resulted in reduced primary stability. Conclusions: To achieve the best primary stability, an insertion angle ranging from 60° to 70° is advisable. If the available space between two adjacent roots is small, a more oblique direction of insertion seems to be favorable to minimize the risk of root contact.


2018 ◽  
Vol 930 ◽  
pp. 276-282
Author(s):  
E.I.O. Pesqueira ◽  
Cristiano Stefano Mucsi ◽  
Jesualdo Luiz Rossi

The objective of this study was to identify the best torque of insertion and removal of mini-implants with a twin screw design (compact and self-drilling) into artificial bones with density and trabecular thickness, similar to anterior, middle and posterior regions of the jaws. Observation of the mini-implants surface using electron microscopy was performed before and after the tests. The torque values obtained during the insertion and removal was measured by digital torque wrench. The analyzed results led to the conclusion that the insertion and removal torques were larger with increase in bone density and cortical thickness. The design of the threads of the mini-implants influenced the insertion torque. Threads with smaller pitch increased the value of insertion torque. The anterior bone drilling installation reduces the insertion torque independent of bone density. Torque increased mainly by increasing the bone density and not necessarily with increased cortical thickness suggesting that the bone density of the trabecular bone must be considered in designing the installation of mini-implants.


2009 ◽  
Vol 79 (5) ◽  
pp. 899-907 ◽  
Author(s):  
Seong-Hun Kim ◽  
Shin-Jae Lee ◽  
Il-Sik Cho ◽  
Seong-Kyun Kim ◽  
Tae-Woo Kim

Abstract Objective: To test the hypothesis that there is no difference in the stability and resistance to rotational moments of early loaded sandblasted and acid-etched (SLA) mini-implants and those of machined-surface implants of the same size and shape. Materials and Methods: A randomized complete block design was used in 12 skeletally mature male beagle dogs. Ninety-six orthodontic mini-implants were tested. Two types of implants were used: some had SLA surface treatment and some had machined surfaces without coating. After 3 weeks of healing, rotational moments of 150 g were applied. The success rates, maximum torque values, angular momentum, and total energy absorbed by the bone were compared. All values were subjected to mixed-model analysis to evaluate the influence of surface treatment, rotational force direction, and site of implantation. Results: The maximum insertion torque and angular momentum of SLA implants were significantly lower than those of machined implants (P = .034, P = .039). The SLA implants had a significantly higher value for total removal energy than the machined implants (P = .046). However, there were no significant differences in total insertion energy, maximum removal torque, and removal angular momentum between the 2 groups. There was no significant difference between clockwise and counterclockwise rotation in all measurements. Conclusion: SLA mini-implants showed relatively lower insertion torque value and angular momentum and higher total energy during removal than the machined implants, suggesting osseointegration of the SLA mini-implant after insertion.


2017 ◽  
Vol 22 (3) ◽  
pp. 47-54 ◽  
Author(s):  
Tatiana Feres Assad-Loss ◽  
Flávia Mitiko Fernandes Kitahara-Céia ◽  
Giordani Santos Silveira ◽  
Carlos Nelson Elias ◽  
José Nelson Mucha

ABSTRACT Objective: This study aimed at evaluating the design and dimensions of five different brands of orthodontic mini-implants, as well as their influence on torsional fracture strength. Methods: Fifty mini-implants were divided into five groups corresponding to different manufactures (DEN, RMO, CON, NEO, SIN). Twenty-five mini-implants were subjected to fracture test by torsion in the neck and the tip, through arbors attached to a Universal Mechanical Testing Machine. The other 25 mini-implants were subjected to insertion torque test into blocks of pork ribs using a torquimeter and contra-angle handpiece mounted in a surgical motor. The shape of the active tip of the mini-implants was evaluated under microscopy. The non-parametric Friedman test and Snedecor’s F in analysis of variance (ANOVA) were used to evaluate the differences between groups. Results: The fracture torque of the neck ranged from 23.45 N.cm (DEN) to 34.82 N.cm (SIN), and of the tip ranged from 9.35 N.cm (CON) to 24.36 N.cm (NEO). Insertion torque values ranged from 6.6 N.cm (RMO) to 10.2 N.cm (NEO). The characteristics that most influenced the results were outer diameter, inner diameter, the ratio between internal and external diameters, and the existence of milling in the apical region of the mini-implant. Conclusions: The fracture torques were different for both the neck and the tip of the five types evaluated. NEO and SIN mini-implants showed the highest resistance to fracture of the neck and tip. The fracture torques of both tip and neck were higher than the torque required to insert mini-implants.


Author(s):  
Ingrid Kästel ◽  
Giles de Quincey ◽  
Jörg Neugebauer ◽  
Robert Sader ◽  
Peter Gehrke

Abstract Background There is disagreement about the optimal torque for tightening smartpegs for resonance frequency analysis (RFA). Subjective finger pressure during hand tightening could affect the reliability of the resulting values. The aim of the current study was therefore to assess whether or not the insertion torque of a smartpeg magnetic device influences the implant stability quotient (ISQ) value during RFA. Methods Thirty self-tapping screw implants (XiVE S, Dentsply Sirona Implants, Bensheim, Germany) with a diameter of 3.8 mm and a length of 11 mm were inserted in three cow ribs with a bone quality of D1. The RFA value of each implant was measured (Ostell, FA W&H Dentalwerk, Bürmoos, Austria) in two orthogonal directions (mesial and buccal) after tightening the corresponding smartpeg type 45 with a mechanically defined value of 5 Ncm (Meg Torq device, Megagen, Daegu, South Korea) (test). Additionally, 4 different examiners measured the RFA after hand tightening the smartpegs, and the results were compared (control). Insertion torque values were determined by measuring the unscrew torque of hand seated smartpegs (Tohnichi Manufacturing Co. Ltd, Tokyo, Japan). Results The ISQ values varied from 2 to 11 Ncm by hand tightening and from 2 to 6 Ncm by machine tightening. The comparison of hand and machine tightening of smartpegs displayed only minor differences in the mean ISQ values with low standard deviations (mesial 79.76 ± 2,11, buccal 77.98 ± 2,) and no statistical difference (mesial p = 0,343 and buccal p = 0,890). Conclusions Manual tightening of smartpeg transducers allows for an objective and reliable determination of ISQ values during RFA.


2014 ◽  
Vol 44 (4) ◽  
pp. 177 ◽  
Author(s):  
Višnja Katić ◽  
Ervin Kamenar ◽  
David Blažević ◽  
Stjepan Špalj

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Fernanda Faot ◽  
Amália Machado Bielemann ◽  
Alessandra Julie Schuster ◽  
Raissa Micaella Marcello-Machado ◽  
Altair Antoninha Del Bel Cury ◽  
...  

Aim. To evaluate the influence of primary insertion torque (IT) values of narrow dental implants on the peri-implant health, implant stability, immunoinflammatory responses, bone loss, and success and survival rates. Methods. Thirty-one edentulous patients received two narrow implants (2.9x10mm, Facility NeoPoros) to retain mandibular overdentures. The implants were categorized in four groups according to their IT: (G1) IT > 10 Ncm; (G2) IT ≥ 10Ncm and ≤ 30 Ncm; (G3) IT >30Ncm and < 45Ncm; (G4) IT ≥ 45Ncm, and all implants were loaded after 3 months of healing. The following clinical outcomes were evaluated 1, 3, 6, and 12 months after implant insertion: (i) peri-implant tissue health (PH), gingival index (GI), plaque index (PI), calculus presence (CP), probing depth (PD), and bleeding on probing (BOP); (ii) implant stability quotient (ISQ) by resonance frequency analysis; and (iii) IL-1β and TNF-α concentration in the peri-implant crevicular fluid. The marginal bone level (MBL) and changes (MBC) were evaluated. The Chi2 test, Kruskal-Wallis test, mixed-effects regression analysis, and the Kendall rank correlation coefficient were used for statistical analysis (α = 5%). Results. G1 presented the highest PD at all evaluated periods. G2 presented higher PI at month 6 and 12. G4 showed increased GI at month 3 and 12 and more CP at month 1 (p=.003). G2 and G4 had higher ISQ values over the study period, while those from G1 and G3 presented lower ISQ values. The IL-1β concentration increased until month 12 and was independent of IT and bone type; G4 had a higher IL-1β concentration in month 3 than the other groups (p=.015). The TNF-α release was negatively correlated with IT, and TNF-α release was highest in G1 at month 12. The MBL immediately after surgery and the MBC at month 12 were similar between the groups, and G4 presented a positive MBC at month 12. The survival and success rates were 75% for G1, 81.3% for G2, 64.3% for G3, and 95% for G4. Conclusion. The IT did not influence the clinical outcomes and the peri-implant immunoinflammatory responses and was weakly correlated with the narrow dental implants primary stability. The observed success rates suggest that the ideal IT for atrophic fully edentulous patients may deviate from the standardized IT of 32 Ncm.


2015 ◽  
Vol 20 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Fabio Lourenço Romano ◽  
Alberto Consolaro

The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.


Sign in / Sign up

Export Citation Format

Share Document