scholarly journals Are terrestrial isopods able to use stridulation and vibrational communication as forms of intra and interspecific signaling and defense strategies as insects do? A preliminary study in Armadillo officinalis

2019 ◽  
Vol 107 (1) ◽  
Author(s):  
Sofia Cividini ◽  
Spyros Sfenthourakis ◽  
Giuseppe Montesanto

AbstractThe capability of producing sounds and vibrations is well known in insects and is thought to be a form of intra- and interspecific communication. Sounds and vibrations are used and modulated for several aims such as interacting with conspecifics, getting information from the environment, and defending against predators. This phenomenon is less known but also present in other arthropods, including a few roller-type terrestrial isopods. In this study, we used a Y-shape test apparatus to investigate the behavior of adult individuals of Armadillo officinalis Duméril, 1816 (Crustacea: Isopoda: Oniscidea) when exposed to two particular vibrational stimuli, namely species-specific stridulations and non-specific substrate-borne vibrations. Our results showed that adults of A. officinalis significantly react to the presence of both types of vibrational stimuli, by moving away from the vibrational source as if they experienced these vibrations as a sign of danger or disturbance. A. officinalis can produce stridulations only when it rolls into a ball during the so-called conglobation, a possible defense mechanism against predators. Stridulation might thus be a secondary form of defense used during conglobation to deter a predator following contact with it and might be experienced as an alert by conspecifics nearby. The high sensitivity to non-specific substrate-borne vibrations might provide A. officinalis with the possibility to anticipate dangers and adverse conditions, giving it a better chance of survival.

Author(s):  
Bianka Siewert

AbstractThe well-known photosensitizers hypericin, harmane, and emodin are typical pigments of certain mushroom species—is this a coincidence or an indication towards a photoactivated defense mechanism in the phylum Basidiomycota? This perspective article explores this hypothesis by cross-linking the chemistry of fungal pigments with structural requirements from known photosensitizers and insights from photoactivated strategies in the kingdom Plantae. Thereby, light is shed on a yet unexplored playground dealing with ecological questions, photopharmaceutical opportunities, and biotechnological potentials.


2003 ◽  
Vol 17 (2) ◽  
pp. 142-146 ◽  
Author(s):  
José Freitas Siqueira Júnior ◽  
Isabela das Neves Rôças

The aim of this study was to describe a 16S rDNA-based nested polymerase chain reaction (nPCR) assay to investigate the occurrence of Campylobacter gracilis in oral infections. Samples were collected from ten infected root canals, ten cases of acute periradicular abscesses and eight cases of adult marginal periodontitis. DNA extracted from the samples was initially amplified using universal 16S rDNA primers. A second round of amplification used the first PCR products to detect C. gracilis using oligonucleotide primers designed from species-specific 16S rDNA signature sequences. The nPCR assay used in this study showed a detection limit of 10 C. gracilis cells and no cross-reactivity was observed with nontarget bacteria. C. gracilis was detected in the three types of oral infections investigated - 4/10 infected root canals; 2/10 acute periradicular abscesses; and 1/8 subgingival specimens from adult periodontitis. The method proposed in this study showed both high sensitivity and high specificity to directly detect C. gracilis in samples from root canal infections, abscesses, and subgingival plaque. Our findings confirmed that C. gracilis may be a member of the microbiota associated with distinct oral infections, and its specific role in such diseases requires further clarification.


2011 ◽  
Vol 437 (3) ◽  
pp. 431-442 ◽  
Author(s):  
Stefanie A.H. de Poot ◽  
Marijn Westgeest ◽  
Daniel R. Hostetter ◽  
Petra van Damme ◽  
Kim Plasman ◽  
...  

Cytotoxic lymphocyte protease GrM (granzyme M) is a potent inducer of tumour cell death and a key regulator of inflammation. Although hGrM (human GrM) and mGrM (mouse GrM) display extensive sequence homology, the substrate specificity of mGrM remains unknown. In the present study, we show that hGrM and mGrM have diverged during evolution. Positional scanning libraries of tetrapeptide substrates revealed that mGrM is preferred to cleave after a methionine residue, whereas hGrM clearly favours a leucine residue at the P1 position. The kinetic optimal non-prime subsites of both granzymes were also distinct. Gel-based and complementary positional proteomics showed that hGrM and mGrM have a partially overlapping set of natural substrates and a diverged prime and non-prime consensus cleavage motif with leucine and methionine residues being major P1 determinants. Consistent with positional scanning libraries of tetrapeptide substrates, P1 methionine was more frequently used by mGrM as compared with hGrM. Both hGrM and mGrM cleaved α-tubulin with similar kinetics. Strikingly, neither hGrM nor mGrM hydrolysed mouse NPM (nucleophosmin), whereas human NPM was hydrolysed efficiently by GrM from both species. Replacement of the putative P1′–P2′ residues in mouse NPM with the corresponding residues of human NPM restored cleavage of mouse NPM by both granzymes. This further demonstrates the importance of prime sites as structural determinants for GrM substrate specificity. GrM from both species efficiently triggered apoptosis in human but not in mouse tumour cells. These results indicate that hGrM and mGrM not only exhibit divergent specificities but also trigger species-specific functions.


2018 ◽  
Vol 26 (1) ◽  
pp. 54-64
Author(s):  
Mátyás Prommer ◽  
I. Lotár Molnár ◽  
Barna Tarján ◽  
Botond Kertész

Abstract Population of the Eagle Owl (Bubo bubo) has been increasing in Europe including Hungary. The species occupy new habitats beside its ancient territories including quarries and buildings. This may result in conflicting conservation and economic interests in active quarries. Because eagle owls are strictly protected in Hungary, human activities around known nest sites require environmental permits. We aimed to obtain information on Eagle Owl behaviour in an operating quarry by tracking an adult female to base a future species-specific guideline to issue environmental permits for mining in quarries. We used a combined GPS-GSM and VHF telemetry. We found that the tracked female did not breed in the study year but remained in her home range during the study period. By studying her seasonal and daily patterns of movements, we found that she was not disturbed by regular human activities under the nesting cliff, but she was more sensitive to unexpected non-regular disturbance. Based on the satellite-tracking data, this specimen used an approximately 18 km2 home range during the study period.


2019 ◽  
Vol 15 (7) ◽  
pp. 20180777 ◽  
Author(s):  
T. Biscéré ◽  
M. Zampighi ◽  
A. Lorrain ◽  
S. Jurriaans ◽  
A. Foggo ◽  
...  

While research on ocean acidification (OA) impacts on coral reefs has focused on calcification, relatively little is known about effects on coral photosynthesis and respiration, despite these being among the most plastic metabolic processes corals may use to acclimatize to adverse conditions. Here, we present data collected between 2016 and 2018 at three natural CO 2 seeps in Papua New Guinea where we measured the metabolic flexibility (i.e. in hospite photosynthesis and dark respiration) of 12 coral species. Despite some species-specific variability, metabolic rates as measured by net oxygen flux tended to be higher at high p CO 2 ( ca 1200 µatm), with increases in photosynthesis exceeding those of respiration, suggesting greater productivity of Symbiodiniaceae photosynthesis in hospite , and indicating the potential for metabolic flexibility that may enable these species to thrive in environments with high p CO 2 . However, laboratory and field observations of coral mortality under high CO 2 conditions associated with coral bleaching suggests that this metabolic subsidy does not result in coral higher resistance to extreme thermal stress. Therefore, the combined effects of OA and global warming may lead to a strong decrease in coral diversity despite the stimulating effect on coral productivity of OA alone.


PROTEOMICS ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 1900064 ◽  
Author(s):  
Dominik Wüllner ◽  
Annika Haupt ◽  
Pascal Prochnow ◽  
Roman Leontiev ◽  
Alan J. Slusarenko ◽  
...  

2015 ◽  
Vol 8 ◽  
pp. MBI.S29736 ◽  
Author(s):  
Kenjiro Nagamine ◽  
Guo-Chiuan Hung ◽  
Bingjie Li ◽  
Shyh-Ching Lo

Using Streptococcus pyogenes as a model, we previously established a stepwise computational workflow to effectively identify species-specific DNA signatures that could be used as PCR primer sets to detect target bacteria with high specificity and sensitivity. In this study, we extended the workflow for the rapid development of PCR assays targeting Enterococcus faecalis, Enterococcus faecium, Clostridium perfringens, Clostridium difficile, Clostridium tetani, and Staphylococcus aureus, which are of safety concern for human tissue intended for transplantation. Twenty-one primer sets that had sensitivity of detecting 5–50 fg DNA from target bacteria with high specificity were selected. These selected primer sets can be used in a PCR array for detecting target bacteria with high sensitivity and specificity. The workflow could be widely applicable for the rapid development of PCR-based assays for a wide range of target bacteria, including those of biothreat agents.


2012 ◽  
Vol 47 (9) ◽  
pp. 837-840 ◽  
Author(s):  
J.I. Lee ◽  
A.S. Pradhan ◽  
J.L. Kim ◽  
I. Chang ◽  
B.H. Kim ◽  
...  

2015 ◽  
Vol 90 (2) ◽  
pp. 1088-1095 ◽  
Author(s):  
Xiaoliang Yu ◽  
Yun Li ◽  
Qin Chen ◽  
Chenhe Su ◽  
Zili Zhang ◽  
...  

ABSTRACTReceptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells.IMPORTANCEThis study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV.


Sign in / Sign up

Export Citation Format

Share Document