scholarly journals Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum

2004 ◽  
Vol 109 (5) ◽  
pp. 1005-1016 ◽  
Author(s):  
B. I. G. Haussmann ◽  
D. E. Hess ◽  
G. O. Omanya ◽  
R. T. Folkertsma ◽  
B. V. S. Reddy ◽  
...  
2009 ◽  
Vol 91 (2) ◽  
pp. 85-99 ◽  
Author(s):  
CHEN-HUNG KAO ◽  
MIAO-HUI ZENG

SummaryIn genetic and biological studies, the F2 population is one of the most popular and commonly used experimental populations mainly because it can be readily produced and its genome structure possesses several niceties that allow for productive investigation. These niceties include the equivalence between the proportion of recombinants and recombination rates, the capability of providing a complete set of three genotypes for every locus and an analytically attractive first-order Markovian property. Recently, there has been growing interest in using the progeny populations from F2 (advanced populations) because their genomes can be managed to meet specific purposes or can be used to enhance investigative studies. These advanced populations include recombinant inbred populations, advanced intercrossed populations, intermated recombinant inbred populations and immortalized F2 populations. Due to an increased number of meiosis cycles, the genomes of these advanced populations no longer possess the Markovian property and are relatively more complicated and different from the F2 genomes. Although issues related to quantitative trait locus (QTL) mapping using advanced populations have been well documented, still these advanced populations are often investigated in a manner similar to the way F2 populations are studied using a first-order Markovian assumption. Therefore, more efforts are needed to address the complexities of these advanced populations in more details. In this article, we attempt to tackle these issues by first modifying current methods developed under this Markovian assumption to propose an ad hoc method (the Markovian method) and explore its possible problems. We then consider the specific genome structures present in the advanced populations without invoking this assumption to propose a more adequate method (the non-Markovian method) for QTL mapping. Further, some QTL mapping properties related to the confounding problems that result from ignoring epistasis and to mapping closely linked QTL are derived and investigated across the different populations. Simulations show that the non-Markovian method outperforms the Markovian method, especially in the advanced populations subject to selfing. The results presented here may give some clues to the use of advanced populations for more powerful and precise QTL mapping.


2014 ◽  
Vol 50 (No. 2) ◽  
pp. 171-176 ◽  
Author(s):  
B.S. Patil ◽  
R.L. Ravikumar ◽  
J.S. Bhat ◽  
C.D. Soregaon

A molecular map of chickpea was constructed using F<sub>9</sub>:F<sub>10</sub> recombinant inbred lines from an intraspecific cross between Fusarium wilt susceptible (JG 62) and resistant (WR 315) genotypes. A total of 23 markers with LOD scores of &gt; 3.0 were mapped on the recombinant inbred lines (RILs). Twenty sequence tagged microsatellites (STMSs) and three amplified fragment length polymorphisms (AFLPs) covered 300.2 cM in five linkage groups at an average inter-marker distance of 13 cM. Early and late wilting due to Fusarium infection was recorded in RILs at 30&nbsp;and 60 DAS, respectively. There was a significant variation among RILs for wilt resistance for both early and late wilting. QTLs associated with early (30 days after sowing (DAS)) and late (60&nbsp;DAS) wilting are located on LG II. The flanking markers for these QTLs were the same as those of previous reports. Five STMS markers located on LG II of reference map (interspecific) were mapped on LG II of the present map (intraspecific) with minor changes in the order of markers indicating the conservation of these genomic regions across the Cicer species.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 485
Author(s):  
Nnanna N. Unachukwu ◽  
Abebe Menkir ◽  
Adekemi Stanley ◽  
Ebenezer O. Farombi ◽  
Melaku Gedil

Strigahermonthica (Del.) Benth is a parasitic weed that devastates cereals in Sub-Saharan Africa. Several control measures have been proposed for the parasite, of these, host plant resistance is considered the most cost-effective for poor farmers. Some tolerant/resistant lines have been developed and these lines display tolerance/resistance mechanisms to the parasite. A series of studies was done to investigate some of the mechanisms through which a resistant (TZISTR1108) and a susceptible (5057) maize line responds to S. hermonthica infestation, as well as the effects of parasitism on these lines. In this study, TZISTR1108 stimulated the germination and attachment of fewer S. hermonthica plants than 5057, both in the laboratory and on the field. In TZISTR1108, the growth of the S. hermonthica plants, that successfully attached, was slowed. When compared to the un-infested plants, the infested resistant plants showed fewer effects of parasitism than the infested susceptible plants. The infested TZISTR1108 plants were more vigorous, taller and resembled their un-infected counterparts. There were substantial reductions in the stomatal conductance and nitrogen content of the 5057 upon infestation. The resistant inbred line showed multiple mechanisms of resistance to S. hermonthica infestation. It thrives better than the susceptible line by reducing the attachment of S. hermonthica and it delays the parasite’s development.


2007 ◽  
Vol 26 (3) ◽  
pp. 219-227 ◽  
Author(s):  
P.R. Westerman ◽  
A. van Ast ◽  
T.J. Stomph ◽  
W. van der Werf

2012 ◽  
Vol 12 (1) ◽  
pp. 137 ◽  
Author(s):  
Balram Marathi ◽  
Smriti Guleria ◽  
Trilochan Mohapatra ◽  
Rajender Parsad ◽  
Nagarajan Mariappan ◽  
...  

2019 ◽  
Author(s):  
Emily S. Bellis ◽  
Elizabeth A. Kelly ◽  
Claire M. Lorts ◽  
Huirong Gao ◽  
Victoria L. DeLeo ◽  
...  

ABSTRACTHost-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential tradeoffs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and belowground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with tradeoffs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9 edited sorghum further indicate the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.SIGNIFICANCE STATEMENTUnderstanding co-evolution in crop-parasite systems is critical to management of myriad pests and pathogens confronting modern agriculture. In contrast to wild plant communities, parasites in agricultural ecosystems are usually expected to gain the upper hand in co-evolutionary ‘arms races’ due to limited genetic diversity of host crops in cultivation. Here, we develop a framework to characterize associations between genome variants in global landraces (traditional varieties) of the staple crop sorghum with the distribution of the devastating parasitic weed Striga hermonthica. We find long-term maintenance of diversity in genes related to parasite resistance, highlighting an important role of host adaptation for co-evolutionary dynamics in smallholder agroecosystems.


1997 ◽  
Vol 48 (2) ◽  
pp. 215 ◽  
Author(s):  
W. R. Lawson ◽  
I. D. Godwin ◽  
M. Cooper ◽  
P. S. Brennan

Three recombinant inbred populations were assessed for tolerance to preharvest sprouting (PHS). Genetic analysis of the PHS scores, as assessed under artificial rain treatment, indicated that for 2 of the populations, tolerance to sprouting was simply inherited and was controlled by 2 independent genes, both of which are necessary for full tolerance. The data presented here show that in these 2 populations the trait is highly heritable under controlled environment situations. It was also demonstrated that the red seed colour gene, derived from Aus1490 and traditionally associated with tolerance, is not necessary for full tolerance to sprouting, although indirect selection for preharvest sprouting tolerance can be performed very effectively by selecting for red grain. The presence of white-seeded lines, recovered from this cross with a red-seeded donor of PHS tolerance, that are at least as tolerant as the most tolerant red-seeded individuals demonstrates that red-seeded donors of PHS tolerance should not be discarded for improvement of this trait.


Sign in / Sign up

Export Citation Format

Share Document