Identification of three closely linked loci conferring broad-spectrum Phytophthora sojae resistance in soybean variety Tosan-231

Author(s):  
Jun-ichi Matsuoka ◽  
Mami Takahashi ◽  
Tetsuya Yamada ◽  
Yuhi Kono ◽  
Naohiro Yamada ◽  
...  
2019 ◽  
Vol 20 (8) ◽  
pp. 1809 ◽  
Author(s):  
Chao Zhong ◽  
Yinping Li ◽  
Suli Sun ◽  
Canxing Duan ◽  
Zhendong Zhu

Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.


2021 ◽  
Author(s):  
Jianxin Ma ◽  
Weidong Wang ◽  
Liyang Chen ◽  
Kevin Fengler ◽  
Joy Bolar ◽  
...  

Abstract Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is the most destructive soybean soil-borne disease worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is an urgent need to prevent the outbreak of the disease. Here we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring extreme broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of unusually large NLR genes belonging to a single evolutionary lineage that is distinct from all other lineages in the soybean genome, and was derived from rounds of intergenic and intragenic unequal recombination. Such recombination events have resulted in promoter fusion and expansion of the LRR domain that presumably explains such broadness of the resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 (i.e., rps11) in any of the non-Rps11-donor varieties examined. Our study thus exemplifies innovative evolution of NLR genes and NLR gene clusters and will accelerate the deployment of Rps11 for soybean protection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipak K. Sahoo ◽  
Anindya Das ◽  
Xiaoqiu Huang ◽  
Silvia Cianzio ◽  
Madan K. Bhattacharyya

AbstractThe Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps (“resistance to Phytophthora sojae”) gene to 8–15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.


2019 ◽  
Author(s):  
Eram Sultan ◽  
Kalpana Dalei ◽  
Prashant Singh ◽  
Binod Bihari Sahu

A plant species is infected by handful of pathogenic organism despite the fact that it is constantly exposed to innumerable pathogens. The chemical anti-bio agents exploited against these pathogens were harmful to environment and human health as well. So the only alternative way is to grow disease resistant varieties of crops by introducing resistant (R) genes. However, new pathogenic races evolve constantly and are notorious for their ability to withstand race specific resistance mediated by R-genes . Plants deploy robust, broad-spectrum and durable resistance mechanisms called nonhost resistance (NHR) against most pathogenic organisms. Such disease resistance mechanisms are nonspecific and effective against all nonhost or non-adaptive pathogens. The NHR defence response includes production of phytoalexins and other antimicrobial compounds, hypersensitive response by rapid localized cell death, deposition of callose and expression of pathogenesis related genes at the site of infection that restricts further growth of pathogen. Although NHR has immense potential to improve crop production in agriculture, very little is known about the mechanism of NHR and its genetic pathways at molecular level. Detail knowledge about the NHR genes from a nonhost plant and engineering the NHR gene into the host plant will be helpful in making broad-spectrum and durable disease resistant crops. In this mini review, we report the list of NHR genes and their function against various phytopathogens. We further report a method to identify or map putative NHR gene/s in Arabidopsis against soybean pathogen Phytophthora sojae nonhost with a goal to improve disease resistance in crop species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weidong Wang ◽  
Liyang Chen ◽  
Kevin Fengler ◽  
Joy Bolar ◽  
Victor Llaca ◽  
...  

AbstractPhytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.


Author(s):  
Rashelle Matthiesen-Anderson ◽  
Clarice Schmidt ◽  
Vinicius C. Garnica ◽  
Loren Giesler ◽  
Alison E Robertson

Phytophthora stem and root rot (PSRR) of soybean, caused by the oomycete Phytophthora sojae, is prevalent in Iowa and Nebraska. Reducing losses to PSRR primarily relies on growing cultivars with specific resistance (Rps) genes. Predominant genes used in commercial soybean cultivars include Rps 1a, Rps 1c, Rps 1k, and Rps 3a. Knowing which Rps gene to deploy depends on knowledge of which genes are effective against the pathogen. From 2016 to 2018, 326 isolates of P. sojae from were recovered from fields in Iowa and Nebraska and classified into pathotypes based on their virulence on 15 soybean genotypes. A total of 15 and 10 pathotypes were identified in Iowa and Nebraska, respectively. Almost all isolates were virulent on Rps 1a, while over 70% of isolates were virulent on Rps 1c and Rps 1k. Only 2.3% of isolates from Iowa were virulent on Rps 3a. Among commercial soybean cultivars tested in the Illinois Soybean Variety trials from 2010 to 2020, Rps 1c was always the most frequently reported gene followed by Rps 1k. In contrast, Rps 1a and Rps 3a were present in less than 10% and less than 5 % of the cultivars tested, respectively. Since many of the P. sojae isolates in our study were virulent on Rps 1a, Rps 1c, and Rps 1k, soybean cultivars with these genes are unlikely to provide protection against PSRR unless they have a high level of partial resistance.


2019 ◽  
Author(s):  
Eram Sultan ◽  
Kalpana Dalei ◽  
Prashant Singh ◽  
Binod Bihari Sahu

A plant species is infected by handful of pathogenic organism despite the fact that it is constantly exposed to innumerable pathogens. The chemical anti-bio agents exploited against these pathogens were harmful to environment and human health as well. So the only alternative way is to grow disease resistant varieties of crops by introducing resistant (R) genes. However, new pathogenic races evolve constantly and are notorious for their ability to withstand race specific resistance mediated by R-genes . Plants deploy robust, broad-spectrum and durable resistance mechanisms called nonhost resistance (NHR) against most pathogenic organisms. Such disease resistance mechanisms are nonspecific and effective against all nonhost or non-adaptive pathogens. The NHR defence response includes production of phytoalexins and other antimicrobial compounds, hypersensitive response by rapid localized cell death, deposition of callose and expression of pathogenesis related genes at the site of infection that restricts further growth of pathogen. Although NHR has immense potential to improve crop production in agriculture, very little is known about the mechanism of NHR and its genetic pathways at molecular level. Detail knowledge about the NHR genes from a nonhost plant and engineering the NHR gene into the host plant will be helpful in making broad-spectrum and durable disease resistant crops. In this mini review, we report the list of NHR genes and their function against various phytopathogens. We further report a method to identify or map putative NHR gene/s in Arabidopsis against soybean pathogen Phytophthora sojae nonhost with a goal to improve disease resistance in crop species.


Author(s):  
Andrés Costa ◽  
Belén Corallo ◽  
Vanesa Amarelle ◽  
Silvina Stewart ◽  
Dinorah Pan ◽  
...  

A nodule-inhabiting Paenibacillus sp. strain (UY79) isolated from wild peanut ( Arachis villosa ) was screened for its antagonistic activity against diverse fungi and oomycetes ( Botrytis cinerea , Fusarium verticillioides , Fusarium oxysporum , Fusarium graminearum , Fusarium semitectum , Macrophomina phaseolina , Phomopsis longicolla , Pythium ultimum, Phytophthora sojae, Rhizoctonia solani , Sclerotium rolfsii and Trichoderma atroviride ). Results obtained show that Paenibacillus sp. UY79 was able to antagonize these fungi/oomycetes and that agar-diffusible compounds and volatile compounds (different from HCN), participate in the antagonism exerted. Acetoin, 2,3-butanediol and 2-methyl-1-butanol were identified among the volatile compounds produced by UY79 strain with possible antagonistic activity against fungi/oomycetes. Paenibacillus sp. strain UY79 did not affect symbiotic association or growth promotion of alfalfa plants when co-inoculated with rhizobia. By whole genome sequence analysis, we determined that strain UY79 is a new species of Paenibacillus within the Paenibacillus polymyxa complex. Diverse genes putatively involved in biocontrol activity were identified in the UY79 genome. Furthermore, according to genome mining and antibiosis assays, strain UY79 would have the capability to modulate the growth of bacteria commonly found in soil/plant communities. IMPORTANCE Phytopathogenic fungi and oomycetes are responsible for causing devastating losses in agricultural crops. Therefore, there is an enormous interest in the development of effective and complementary strategies that allow the control of the phytopathogens, reducing the input of agrochemicals in croplands. Discovery of new strains with expanded antifungal activities and with a broad spectrum of action is challenging and of great future impact. Diverse strains belonging to the P. polymyxa complex have been reported to be effective biocontrol agents. Results presented here show that the novel discovered strain of Paenibacillus sp. presents diverse traits involved in antagonistic activity against a broad spectrum of pathogens and would be a potential and valuable strain to be further assessed for the development of biofungicides.


Author(s):  
Liyang Chen ◽  
Weidong Wang ◽  
Jieqing Ping ◽  
Joshua C. Fitzgerald ◽  
Guohong Cai ◽  
...  

2017 ◽  
Vol 2 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Amy L. Donaldson ◽  
Karen Krejcha ◽  
Andy McMillin

The autism community represents a broad spectrum of individuals, including those experiencing autism, their parents and/or caregivers, friends and family members, professionals serving these individuals, and other allies and advocates. Beliefs, experiences, and values across the community can be quite varied. As such, it is important for the professionals serving the autism community to be well-informed about current discussions occurring within the community related to neurodiversity, a strengths-based approach to partnering with autism community, identity-first language, and concepts such as presumed competence. Given the frequency with which speech-language pathologists (SLPs) serve the autism community, the aim of this article is to introduce and briefly discuss these topics.


Sign in / Sign up

Export Citation Format

Share Document