Granite-hosted gold mineralization in the Midlands greenstone belt: a new type of low-grade gold deposit in Zimbabwe

1998 ◽  
Vol 33 (5) ◽  
pp. 437-460 ◽  
Author(s):  
P. Buchholz ◽  
P. Herzig ◽  
G. Friedrich ◽  
R. Frei
2020 ◽  
Author(s):  
Laura R. Katz ◽  
Daniel J. Kontak ◽  
Benoît Dubé ◽  
Vicki McNicoll ◽  
Robert Creaser ◽  
...  

Abstract The Archean low-grade, large-tonnage Côté Gold Au(-Cu) deposit is the first large gold deposit discovered in the Swayze greenstone belt, Ontario, Canada. The deposit is hosted by the Chester Intrusive Complex, a low-Al composite, subvolcanic intrusion composed of tonalite, quartz diorite, and diorite that was previously constrained to ca. 2741 to 2739 Ma (U-Pb zircon). Presented here is the first detailed study of the mineralization and related alteration, along with the relative and absolute age (U-Pb, Re-Os) constraints on gold mineralization. The earliest hydrothermal stage is represented by rare Au-bearing amphibole-rich veins and breccias. The main ore stage consists of biotite-rich alteration centered on an Au(-Cu)–bearing magmatic-hydrothermal biotite breccia body with spatially related disseminated biotite and veins of both sheeted and stockwork type. Extensive fracture-controlled and replacement-style Au ± Cu-bearing muscovite alteration overprints biotite-altered rocks in the core of the deposit. Barren fracture-controlled and disseminated epidote alteration is localized to the north of the deposit and above the magmatic-hydrothermal biotite breccia. Late, texturally destructive albite alteration overprints the mineralized hydrothermal alteration in the deposit core. U-Pb isotope dilution-thermal ionization mass spectrometry and laser ablation-inductively coupled plasma-mass spectrometry ages for hydrothermal titanite from amphibole (2745 ± 3 Ma) and albite (2737.5 +2.2/–1.8, 2745 ± 9, and 2736 ± 7 Ma) alteration assemblages constrain hydrothermal activity to ca. 2740 Ma. The timing of gold and sulfide mineralization is also constrained by two Re-Os molybdenite ages of 2736.1 ± 11.4 (biotite alteration) and 2746.8 ± 11.4 Ma (muscovite alteration). These new ages overlap with the ca. 2741 to 2739 Ma magmatism for the Chester Intrusive Complex, thereby suggesting a synintrusion, magmatic-hydrothermal origin for the gold mineralization and related alteration. This is significant, as it represents a new gold metallogenic event in the Abitibi subprovince, for which regional importance remains to be defined. Considering the spatial association of the deposit with a dioritic intrusion and the temporal overlap of igneous activity with alteration (i.e., amphibole, biotite, sericite) and mineralization (i.e., breccias, veins, disseminations), the deposit is interpreted as an Archean magmatic-hydrothermal ore system sharing analogies with Phanerozoic Au-Cu porphyry deposits. It suggests that Archean porphyry-type deposits can form in low-Al composite intrusions, which are known to host Cu-Mo-Au breccia, vein, and disseminated mineralization and underlie temporally and genetically related felsic to intermediate volcanic rocks that host volcanogenic massive sulfide deposits.


2021 ◽  
pp. 52-61
Author(s):  
Vladimir Salikhov

The significant role of tectonometamorphic gold mineralization style thrust structures in the formation of some gold deposits (Kultuminskoye, Andryushkinskoye, Sepchugur, etc.) within Trans-Baikal region is shown. Thrust structures may present certain prospects for major relatively low-grade gold deposit prospecting, which requires a reassessment of some deposits.


2019 ◽  
Vol 114 (6) ◽  
pp. 1057-1094 ◽  
Author(s):  
Stéphane De Souza ◽  
Benoît Dubé ◽  
Patrick Mercier-Langevin ◽  
Vicki McNicoll ◽  
Céline Dupuis ◽  
...  

Abstract The Canadian Malartic stockwork-disseminated gold deposit is an Archean world-class deposit located in the southern Abitibi greenstone belt. It contains over 332.8 tonnes (t; 10.7 Moz) of Au at a grade of 0.97 ppm, in addition to 160 t (5.14 Moz) of past production (1935–1981). Although the deposit is partly situated within the Larder Lake-Cadillac fault zone, most of the ore occurs up to ~1.5 km to the south of the fault zone. The main hosts of the mineralized zones are greenschist facies turbiditic graywacke and mudstone of the Pontiac Group (~2685–2682 Ma) and predominantly subalkaline ~2678 Ma porphyritic quartz monzodiorite and granodiorite. These intrusions were emplaced during an episode of clastic sedimentation and alkaline to subalkaline magmatism known as the Timiskaming assemblage (<2680–2670 Ma in the southern Abitibi). The orebodies define two main mineralized trends, which are oriented subparallel to the NW-striking S2 cleavage and the E-striking, S-dipping Sladen fault zone. This syn- to post-D2 ductile-brittle to brittle Sladen fault zone is mineralized for more than 3 km along strike. The ore mainly consists of disseminated pyrite in stockworks and replacement zones, with subordinate auriferous quartz veins and breccia. Gold is associated with pyrite and traces of tellurides defining an Au-Te-W ± Ag-Bi-Mo-Pb signature. The orebodies are zoned outward, and most of the higher-grade (>1 ppm Au) ore was deposited as a result of iron sulfidation from silicates and oxides and Na-K metasomatism in carbonatized rocks. The alteration footprint comprises a proximal alteration envelope (K- or Na-feldspar-dolomite-calcite-pyrite ± phlogopite). This proximal alteration zone transitions to an outer shell of altered rocks (biotite-calcite-phengitic white mica), which hosts sub-ppm gold grades and reflects decreasing carbonatization, sulfidation, and aNa+/aH+ or aK+/aH+ of the ore fluid. Gold mineralization, with an inferred age of ~2664 Ma (Re-Os molybdenite), was contemporaneous with syn- to late-D2 peak metamorphism in the Pontiac Group; it postdates sedimentation of the Timiskaming assemblage along the Larder Lake-Cadillac fault zone (~2680–2669 Ma) and crystallization of the quartz monzodiorite. These chronological relationships agree with a model of CO2-rich auriferous fluid generation in amphibolite facies rocks of the Pontiac Group and gold deposition in syn- to late-D2 structures in the upper greenschist to amphibolite facies. The variable geometry, rheology, and composition of the various intrusive and sedimentary rocks have provided strain heterogeneities and chemical gradients for the formation of structural and chemical traps that host the gold. The Canadian Malartic deposit corresponds to a mesozonal stockwork-disseminated replacement-type deposit formed within an orogenic setting. The predominance of disseminated replacement ore over fault-fill and extensional quartz-carbonate vein systems suggests that the mineralized fracture networks remained relatively permeable and that fluids circulated at a near-constant hydraulic gradient during the main phase of auriferous hydrothermal alteration.


2019 ◽  
Vol 55 (8) ◽  
pp. 1605-1624 ◽  
Author(s):  
M. Sayab ◽  
F. Molnár ◽  
D. Aerden ◽  
T. Niiranen ◽  
J. Kuva ◽  
...  

Abstract The relative and absolute timing of orogenic gold deposits in complex structural settings are active and challenging topics of research, especially in Precambrian greenstone belts. The Suurikuusikko gold deposit in Central Lapland Greenstone Belt is currently the largest primary gold producing deposit in Europe, located on a slight bend of the strike-slip Kiistala shear zone (KiSZ). Gold is refractory and locked inside arsenopyrite and pyrite. In this study, different structural features were investigated along the KiSZ from the recently stripped Etelä pit, which is the southern extension of the Suurikuusikko ore body. Our data source ranges from aeromagnetic to high-resolution aerial images, X-ray computed tomography scans of selected rock samples and regional geological and geophysical datasets. The KiSZ has recorded five discrete deformation phases, spanning between ca. 1.92 and 1.76 Ga. The refractory gold at the Suurikuusikko deposit formed during E-W contraction related to the D1 thrusting phase. This was followed by a N-S shortening event (D2), where most of the strain was taken up by the northern and southern thrusts. Tectonic vectors then switched from N-S to NE-SW and, as a result, dextral strike-slip regime (D3) commenced along the KiSZ. This event exsolved invisible gold from the sulfides and remobilized it along with fractures. A near-orthogonal switch of the regional stress regime from NE-SW to NW-SE flipped the kinematics of the KiSZ from dextral to sinistral (D4). The last deformation phase (D5) produced widespread veining under E-W contraction and secured gold mineralization at the Iso-Kuotko gold deposit within the KiSZ.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Shun-Da Li ◽  
Zhi-Gao Wang ◽  
Ke-Yong Wang ◽  
Wen-Yan Cai ◽  
Da-Wei Peng ◽  
...  

The Jinchang gold deposit is located in the eastern Yanji–Dongning Metallogenic Belt in Northeast China. The orebodies of the deposit are hosted within granite, diorite, and granodiorite, and are associated with gold-mineralized breccia pipes, disseminated gold in ores, and fault-controlled gold-bearing veins. Three paragenetic stages were identified: (1) early quartz–pyrite–arsenopyrite (stage 1); (2) quartz–pyrite–chalcopyrite (stage 2); and (3) late quartz–pyrite–galena–sphalerite (stage 3). Gold is hosted predominantly within pyrite. Pyrite separated from quartz–pyrite–arsenopyrite cement within the breccia-hosted ores (Py1) yield a Re–Os isochron age of 102.9 ± 2.7 Ma (MSWD = 0.17). Pyrite crystals from the quartz–pyrite–chalcopyrite veinlets (Py2) yield a Re–Os isochron age of 102.0 ± 3.4 Ma (MSWD = 0.2). Pyrite separated from quartz–pyrite–galena–sphalerite veins (Py3) yield a Re–Os isochron age of 100.9 ± 3.1 Ma (MSWD = 0.019). Re–Os isotopic analyses of the three types of auriferous pyrite suggest that gold mineralization in the Jinchang Deposit occurred at 105.6–97.8 Ma (includes uncertainty). The initial 187Os/188Os values of the pyrites range between 0.04 and 0.60, suggesting that Os in the pyrite crystals was derived from both crust and mantle sources.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Sign in / Sign up

Export Citation Format

Share Document