Optimization of laser butt welding parameters based on the orthogonal array with fuzzy logic and desirability approach

2011 ◽  
Vol 44 (4) ◽  
pp. 499-515 ◽  
Author(s):  
P. Sathiya ◽  
M. Y. Abdul Jaleel ◽  
D. Katherasan ◽  
B. Shanmugarajan
Author(s):  
C. Ahilan ◽  
S. Santhosh Kumar ◽  
S. Ramesh Kumar ◽  
S. Abdul Gudoos ◽  
Senthil Kumaran Selvaraj

1989 ◽  
Vol 5 (01) ◽  
pp. 10-15
Author(s):  
V. Birman ◽  
R. Latorre

The hulls of modern ships are almost entirely welded. This makes the prediction of post-welded deformations very important. The number of parameters involved in the process of welding is large, so the exact mathematical theory for prediction of deformations is unavailable. Some researchers have estimated the post-welded deflections based on empirical and semi-empirical equations. The growing literature on the study of postwelded deflections of hull plates enables the estimation of these deflections based on the plate geometry and the plate material. The limited number of critical parameters covered by these experiments makes it difficult to organize the data systematically. This has delayed the introduction of a framework for estimating the influence on the plate deflection from welding speed, current, number of passes, welding rod size and material, etc. The approach adopted in the U.S.S.R. was to develop an integrated framework to include the critical welding parameters. The main results from this approach were published in several books, with the main reference being a book by Kuzminov published in 1974. From the standpoint of ship production, it is useful to understand this Soviet approach as well as to give examples of its use. Therefore, this paper introduces the Soviet procedure for calculation of deflection due to butt welding, presents the graphical aids used in this procedure, and presents a worked example using this procedure for a butt welded plate.


2020 ◽  
Vol 14 (3) ◽  
pp. 369-374
Author(s):  
Željko Bilić ◽  
Ivan Samardžić ◽  
Nedjeljko Mišina ◽  
Katarina Stoić

As already known, no proper control or process control parameter which absolutely guarantees a high level quality of joints made by electro-resistive welding has been established so far, especially when all possible parameters are taken into account during the welding process. Due to the process of butt-welding being very short-lived, ensuring quality of the joints is a difficult and under-researched problem. The application of non-destructive testing methods to the control interface joints is also not reliable. Therefore, further research in this area should concentrate on studying the influence of basic welding parameters, and calculating their direct or indirect impact can serve to achieve a highquality welded joint with for practice sufficient accuracy.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 102 ◽  
Author(s):  
António Pereira ◽  
Ana Cabrinha ◽  
Fábio Rocha ◽  
Pedro Marques ◽  
Fábio Fernandes ◽  
...  

The welding of dissimilar metals was carried out using a pulsed Nd: YAG laser to join DP1000 steel and an aluminum alloy 1050 H111. Two sheets of each metal, with 30 × 14 × 1 mm3, were lap welded, since butt welding proved to be nearly impossible due to the huge thermal conductivity differences and melting temperature differences of these materials. The aim of this research was to find the optimal laser welding parameters based on the mechanical and microstructure investigations. Thus, the welded samples were then subjected to tensile testing to evaluate the quality of the joining operation. The best set of welding parameters was replicated, and the welding joint obtained using these proper parameters was carefully analyzed using optical and scanning electron microscopes. Despite the predicted difficulties of welding two distinct metals, good quality welded joints were achieved. Additionally, some samples performed satisfactorily well in the mechanical tests, reaching tensile strengths close to the original 1050 aluminum alloy.


2017 ◽  
Vol 35 (6) ◽  
pp. 59-66
Author(s):  
Byeong-Ju Jin ◽  
Min-Ho Park ◽  
Tae-Jong Yun ◽  
Ill-Soo Kim ◽  
Ki-Young Park ◽  
...  

Fuzzy logic controller (FLC) is well suited where there is a considerable amount of uncertainty in the process. The material properties of a weldment in TIG welding depend on welding parameters like shielding gas pressure, current, torch angle, Electrode size, electrode projection, arc length etc. It is also influenced by the joint parameters like groove angle, land, root gap, preheating temperature. But a lot of noise parameters like variation of base material properties, variation in quality of inert gas used, variation in ambient conditions, variation in workman ship etc introduce uncertainties in the into the process. To deal with such uncertainties an FLC is designed and validated. In the current work, four parameters namely inert gas pressure, current, groove angle of the joint and preheating temperature of base metal are considered as input variables and the influence of these variables on the 0.2% proof stress is studied. Three linguistic terms are used for each parameter. To minimise the number of experiments in designing data base an L-9 orthogonal array is chosen for experimentation. TIG welding is carried and data base with 9 rules are formulated. For the input and out variables Triangular membership function is selected and FLC is designed. The FLC is validated with 5 more experiments. Mamdani approach is used to develop the Fuzzy controller.


2013 ◽  
Vol 814 ◽  
pp. 187-192 ◽  
Author(s):  
Radu Cojocaru ◽  
Lia Boțilă ◽  
Cristian Ciucă ◽  
Horia Florin Dascau ◽  
Victor Verbiţchi

Aluminum alloys are widely used in aerospace, automotive, railway and shipbuilding industry, as materials having remarkable properties for applications in these fields. For this reason, in recent years the interest for friction stir lap welding of sheets from these alloys increased.The behaviour of welding materials from the plastic and mechanic viewpoint are different in case of friction stir lap welding compared to friction stir butt welding.The welding tools for friction stir lap welding can have different configurations and sizes compared to butt welding. The used welding parameters must be reconsidered in order to obtain a proper flow of material for obtaining a friction stir lap welded joint.In addition, it is very important how to prepare the sheets surfaces that come into contact and their placement (relative to each other).The paper presents considerations regarding friction stir lap welding, with examples/concrete results obtained in welding of similar and dissimilar light alloys (alloys of aluminum, magnesium and titanium). It also presents data on the characteristics of obtained welded joints, related with particularities of friction stir lap welding.The obtained results showed that light alloys sheets used in various industrial fields can be joined with respect of basis conditions specific for the friction stir lap welding process.


2013 ◽  
Vol 712-715 ◽  
pp. 623-626
Author(s):  
Dong Wang ◽  
Chang Shu He ◽  
Zhen Yu Qi ◽  
Hao Wang ◽  
Xiang Zhao ◽  
...  

3-mm thick Al-12.7Si-0.7Mg alloy plates were cut from the hot extrusion profiles. A butt-welding joint was made by gas metal arc welding (GMAW). The microstructures and mechanical properties of welded joint were studied by scanning electron microscope and tensile test methods. The results show that weld bead with good appearance and internal quality was obtained under the optimized welding parameters. The ultimate tensile strength for base material and welded joints of hot extrusion Al-12.7Si-0.7Mg alloy are much higher than that of 6063 alloy in T4 condition.


Sign in / Sign up

Export Citation Format

Share Document