Behavior and quantitative characterization of CBN wheel wear in high-speed grinding of nickel-based superalloy

2016 ◽  
Vol 87 (9-12) ◽  
pp. 3545-3555 ◽  
Author(s):  
Zhengcai Zhao ◽  
Yucan Fu ◽  
Jiuhua Xu ◽  
Zhiwei Zhang
2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


2013 ◽  
Vol 589-590 ◽  
pp. 209-214 ◽  
Author(s):  
Jia Yan Zhao ◽  
Yu Can Fu ◽  
Jiu Hua Xu ◽  
Lin Tian ◽  
Lu Yang

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new experimental system for high speed grinding test with single diamond grain is presented. The differences of surface topography and chip morphology of Inconel 718 machined by single diamond grain and single CBN grain were evaluated. The grinding forces and corresponding maximum undeformed chip thickness were measured under different grinding speeds. The chips, characterized by crack and segment band feature like the cutting segmented chips, were collected to study the high speed grinding mechanism of nickel-based superalloy. The results show that the grinding speed has an important effect on the forces and chip formation, partly due to the temperature variation. As the speed increases, the groove surface becomes smoother.


2016 ◽  
Vol 693 ◽  
pp. 1003-1008 ◽  
Author(s):  
Xin Xin Xi ◽  
Wen Feng Ding ◽  
Zheng Li ◽  
Jiu Hua Xu ◽  
Xun Yang Wang

High-speed grinding experiment of titanium matrix composites is carried out with cubic boron nitride (CBN) superabrasive wheels in this work. The heat transfer into the titanium matrix composites (TMCs) is discussed based on theoretical analysis. A calculation method of thermal ratio passing into the workpiece is represented. Results obtained show that high-speed grinding of PTMCs using vitrified CBN wheel has a greater thermal ratio passing into the workpiece than using electroplated CBN wheel. Moreover, a linear relationship is established between es and ds1/4ap-3/4vw-1/2.


1993 ◽  
Vol 115 (2) ◽  
pp. 231-240 ◽  
Author(s):  
A. Gogoussis ◽  
M. Donath

In order to accurately model robots for precision applications where dynamics are significant, it is important to include the effects of Coulomb friction in the bearings and transmissions. The general guidelines for analyzing friction at the joints will be discussed. It will be shown that friction can be related to the joint coordinates and their first and second time derivatives. The resulting extended robot dynamics formulation will be investigated as it applies to the inverse and forward robot dynamics problems. The analytical dependency of Coulomb friction on joint interactions is explicitly examined. As an illustration of friction effects in transmissions, we elaborate on the friction in harmonic drives and develop a method for its evaluation. The effect of friction in the bearings on the dynamics is also considered and a quantitative characterization of several specific cases is provided. This study is significant to understanding the design and control issues as they relate to achieving high speed precision robot motion.


2014 ◽  
Vol 1027 ◽  
pp. 140-145
Author(s):  
Yao Guang Chen ◽  
Wen Zhuang Lu ◽  
Jun Xu ◽  
Yan Song Zhu ◽  
Dun Wen Zuo

A series of grinding experiments were carried out with CBN wheel to focus on the surface integrity of titanium alloy TC4-DT in high speed grinding . In order to get the proper process parameters to control the surface integrity of the TC4-DT, surface roughness, subsurface morphology and microhardness variations have been studied. In addition to the use of CBN wheel, scanning electron microscopy (SEM), 3-d contour instrument and microhardness tester was applied. The results show that the surface roughness is decreased obviously when grinding wheel linear velocity rises from 60m/s to 80m/s. While the grinding speed rises from 80m/s to 100m/s, the surface roughness value increases slightly. Moreover, the surface roughness value increases with the grinding depth and the increasing trend is obvious in the process of machining. The microstructure analysis shows that during high speed grinding with CBN wheels, good quality surface with 10μm grinding depth can be obtained. Table feed rate has weak influence on the grinding surface topography. The microhardness analysis indicates that surface microhardness increases sharply with the increasing of grinding wheel linear velocity in high speed grinding.


Sign in / Sign up

Export Citation Format

Share Document