Effect of extrusion temperature on the microstructure and tensile property of 2D-Cf/Al composites by liquid extrusion infiltration

2017 ◽  
Vol 94 (1-4) ◽  
pp. 1349-1355 ◽  
Author(s):  
Y. Q. Ma ◽  
L. H. Qi
2021 ◽  
Vol 1948 (1) ◽  
pp. 012194
Author(s):  
Min Yang ◽  
Shi-Hai Sun ◽  
Benpeng Wang ◽  
Yaojian Liang ◽  
Lu Wang ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 1415-1418 ◽  
Author(s):  
Shu Qing Yan ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Ji Wen Li

In this study, some low-titanium aluminum alloys produced by electrolysis were prepared and the effect of various titanium contents on microstructure and tensile property of Zn-Al alloy was investigated. The test results showed that addition of titanium by electrolysis is an effective way to refine the grain size of Zn-Al alloy. As the titanium content is 0.04 wt%, the grain size becomes to be a minimum value and the tensile property of the alloy reaches to the maximum. Electrolysis showed that titanium atoms are to be some inherent particles in low-titanium aluminum alloy. These titanium atoms enter into the aluminum melt liquid and spread to the whole melt rapidly under stirring action of electromagnetic field of the electric current. The heterogeneous phase nuclei are high melting TiC and TiAl3 particles formed from in-situ precipitating trace C and Ti during cooling process. These in-situ precipitating heterogeneous nucleation sites with small dimension, high dispersity, cleaning interface and fine soakage with melt, have better capacity of heterogeneous nucleation than of exotic particles. It may inhibit grain growth faster and more effective in pinning dislocations, grain boundaries or sub-boundaries.


2013 ◽  
Vol 17 (5) ◽  
pp. 1501-1503 ◽  
Author(s):  
Zhanping Yang ◽  
Li Zhang ◽  
Rou-Xi Chen ◽  
Ji-Huan He ◽  
Jian-Hua Cao ◽  
...  

The effect of spinneret size and place on diameter and tensile property of cellulose acetate fibers is studied, and a criterion for the maximal breaking energy is obtained, and the spinneret distribution can be optimized for each spinning condition.


1993 ◽  
Vol 66 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Asahiro Ahagon

Abstract Analysis is made for the origin of the mixing-induced tensile property variation of a filled rubber. Attention is paid to the hydrodynamic effect f(ϕe) of the filler, defined here as the factor to adjust the deviation of 100% modulus from the theory of rubber elasticity. For the rubbers mixed under variety of conditions, the f(ϕe)'s are calculated from the observed values of the modulus, at 25°C and 100°C, and the crosslink density. The variation of the f(ϕe) is considered to be governed by the mobility of the polymer confined in agglomerates of the filler. The mobility variation due to mixing seems to be mainly influenced by agglomerate size at 25°C, and by agglomerate size and chemical constraints at 100°C. Therefore, the f(ϕe)'s at the two temperatures are suggested to be useful measures of the state of carbon-black micro-dispersion. The extensibility of the rubbers is closely related f(ϕe). This indicates that the failure property is also governed by the mobility of the confined polymer.


Sign in / Sign up

Export Citation Format

Share Document