Effect of jet electrodeposition conditions on microstructure and mechanical properties of Cu–Al2O3 composite coatings

2019 ◽  
Vol 105 (11) ◽  
pp. 4509-4516 ◽  
Author(s):  
Hui Fan ◽  
Yangpei Zhao ◽  
Shankui Wang ◽  
Huafeng Guo
Materials ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 853 ◽  
Author(s):  
Yang Bai ◽  
Zhenhua Wang ◽  
Xiangbo Li ◽  
Guosheng Huang ◽  
Caixia Li ◽  
...  

2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540021 ◽  
Author(s):  
Xiaojin Wei ◽  
Zhendi Yang ◽  
Ying Tang ◽  
Wei Gao

Copper ( Cu ) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu , sol-enhanced Cu – Al 2 O 3 nanocomposite coatings were electroplated by adding a transparent Al oxide ( Al 2 O 3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al 2 O 3 sol concentration. The results show that the Al 2 O 3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by ~20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu – Al 2 O 3 composite coatings. The wear resistance was also improved by ~84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050243
Author(s):  
Hui Fan ◽  
Jie Jiang ◽  
Yangpei Zhao ◽  
Shankui Wang ◽  
Zhijing Li

Ni–Al2O3 composite coatings were prepared with a modified Watt’s bath by using jet electrodeposition method. As the key process parameter, current density and the addition of Al2O3 nanoparticles in electrolyte were studied about the effect on the surface morphology and co-deposition of Al2O3 nanoparticles of composite coating. The mechanical and tribological properties of the composite coating were also tested. The results show that properly increasing the current density and Al2O3 addition can increase the co-deposition of nanoparticles in the coating and promote the formation of a dense and refined coating structure. Using the optimized process parameters of current density (300 A/dm2) and Al2O3 addition (30 g/L), the co-deposition of Al2O3 in the composite coating can reach a maximum of 13.1 at.%. The hardness of the coating reaches the peak at 623 HV. The wear rate of the composite coating is also greatly reduced with optimized parameters.


2012 ◽  
Vol 538-541 ◽  
pp. 386-390
Author(s):  
Xiao Juan Lu

YSZ/Al2O3 composite coatings have been fabricated by using EPD. The microstructures, mechanical properties and micro-stresses of the coatings produced from different sized powders and sintered at different temperatures have been studied. Different attrition milling time leads to different particle distribution modes, thereby different microstructures. Due to the deposition process and the constraint effect from the substrate, a gradient structure has been formed across the coating thickness.


Sign in / Sign up

Export Citation Format

Share Document