scholarly journals Is ink heating a relevant concern in the High Speed Sintering process?

Author(s):  
Rhys J. Williams ◽  
Patrick J. Smith ◽  
Candice Majewski

AbstractHigh Speed Sintering (HSS) is a novel polymer additive manufacturing process which utilises inkjet printing of an infrared-absorbing pigment onto a heated polymer powder bed to create 2D cross-sections which can be selectively sintered using an infrared lamp. Understanding and improving the accuracy and repeatability of part manufacture by HSS are important, ongoing areas of research. In particular, the role of the ink is poorly understood; the inks typically used in HSS have not been optimised for it, and it is unknown whether they perform in a consistent manner in the process. Notably, the ambient temperature inside a HSS machine increases as a side effect of the sintering process, and the unintentional heating to which the ink is exposed is expected to cause changes in its fluid properties. However, neither the extent of ink heating during the HSS process nor the subsequent changes in its fluid properties have ever been investigated. Such investigation is important, since significant changes in ink properties at different temperatures would be expected to lead to inconsistent printing and subsequently variations in part accuracy and even the degree of sintering during a single build. For the first time, we have quantified the ink temperature rise caused by unintentional, ambient heating during the HSS process, and subsequently measured several of the ink’s fluid properties across the ink temperature range which is expected to be encountered in normal machine operation (25 to 45 ∘C). We observed only small changes in the ink’s density and surface tension due to this heating, but a significant drop (36%) in its viscosity was seen. By inspection of the ink’s Z number throughout printing, it is concluded that these changes would not be expected to change the manner in which droplets are delivered to the powder bed surface. In contrast, the viscosity decrease during printing is such that it is expected that the printed droplet sizes do change in a single build, which may indeed be a cause for concern with regard to the accuracy and repeatability of the inkjet printing used in HSS, and subsequently to the properties of the polymer parts obtained from the process.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3464
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Xianwen Ran ◽  
Yiting Wu ◽  
Ping Liu ◽  
...  

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.


Author(s):  
Kevin Florio ◽  
Dario Puccio ◽  
Giorgio Viganò ◽  
Stefan Pfeiffer ◽  
Fabrizio Verga ◽  
...  

AbstractPowder bed fusion (PBF) of ceramics is often limited because of the low absorptance of ceramic powders and lack of process understanding. These challenges have been addressed through a co-development of customized ceramic powders and laser process capabilities. The starting powder is made of a mix of pure alumina powder and alumina granules, to which a metal oxide dopant is added to increase absorptance. The performance of different granules and process parameters depends on a large number of influencing factors. In this study, two methods for characterizing and analyzing the PBF process are presented and used to assess which dopant is the most suitable for the process. The first method allows one to analyze the absorptance of the laser during the melting of a single track using an integrating sphere. The second one relies on in-situ video imaging using a high-speed camera and an external laser illumination. The absorption behavior of the laser power during the melting of both single tracks and full layers is proven to be a non-linear and extremely dynamic process. While for a single track, the manganese oxide doped powder delivers higher and more stable absorptance. When a full layer is analyzed, iron oxide-doped powder is leading to higher absorptance and a larger melt pool. Both dopants allow the generation of a stable melt-pool, which would be impossible with granules made of pure alumina. In addition, the present study sheds light on several phenomena related to powder and melt-pool dynamics, such as the change of melt-pool shape and dimension over time and powder denudation effects.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2015 ◽  
Vol 59 (2) ◽  
pp. 205011-205017 ◽  
Author(s):  
Akira Sakamoto ◽  
Manabu Numata ◽  
Yasuhiro Ogasawara ◽  
Mami Hatanaka ◽  
Yukari Motosugi ◽  
...  

2014 ◽  
Vol 922 ◽  
pp. 469-474 ◽  
Author(s):  
Sho Manabe ◽  
Hiroshi Utsunomiya ◽  
Tetsuo Sakai ◽  
Ryo Matsumoto

Magnesium alloys show low deformability at low temperature because of hcp structure and inactiveness of basal slip. Manufacturing of thin sheet is difficult in industries. Some approaches, such as small-draft multi-pass rolling, intermediate annealing, isothermal rolling and high-speed rolling were proposed to overcome the deformability. However, small edge cracks are still formed on the sheet. In this study, rolling speed of 1000m/min was employed to warm-roll AZ31B magnesium alloy in a single pass at different temperatures. The edge cracks formed after the rolling were classified into three main groups: minor, regular and zigzag edge cracks. ‘Crack contact length’ are introduced to explain the morphology of edge cracks. The results show that the critical reduction for crack initiation depends on the pre-heating temperature. The spacing between edge cracks increases linearly with the crack contact length regardless of roll diameter, speed and reduction. It is suggested that this approach is useful to understand the formation mechanism of edge cracks and to evaluate the rollability of magnesium alloys.


2008 ◽  
Vol 605 ◽  
pp. 401-428 ◽  
Author(s):  
STEFAN HEIN ◽  
WERNER KOCH

Acoustic resonances of simple three-dimensional finite-length structures in an infinitely long cylindrical pipe are investigated numerically by solving an eigenvalue problem. To avoid unphysical reflections at the finite grid boundaries placed in the uniform cross-sections of the pipe, perfectly matched layer absorbing boundary conditions are applied in the form of the complex scaling method of atomic and molecular physics. Examples of the structures investigated are sound-hard spheres, cylinders, cavities and closed side branches. Several truly trapped modes with zero radiation loss are identified for frequencies below the first cutoff frequency of the pipe. Such trapped modes can be excited aerodynamically by coherent vortices if the frequency of the shed vortices is close to a resonant frequency. Furthermore, numerical evidence is presented for the existence of isolated embedded trapped modes for annular cavities above the first cutoff frequency and for closed side branches below the first cutoff frequency. As applications of engineering interest, the acoustic resonances are computed for a ball-type valve and around a simple model of a high-speed train in an infinitely long tunnel.


Sign in / Sign up

Export Citation Format

Share Document