scholarly journals Sustainable roll-to-roll manufactured multi-layer smart label

Author(s):  
Liisa Hakola ◽  
Elina Jansson ◽  
Romain Futsch ◽  
Tuomas Happonen ◽  
Victor Thenot ◽  
...  

AbstractSustainability in electronics has a growing importance due to, e.g. increasing electronic waste, and global and European sustainability goals. Printing technologies and use of paper as a substrate enable manufacturing of sustainable electronic devices for emerging applications, such as the multi-layer anti-counterfeit label presented in this paper. This device consisted of electrochromic display (ECD) element, NFC (near field communication) tag and circuitry, all fully roll-to-roll (R2R) printed and assembled on plastic-free paper substrate, thus leading to a sustainable and recyclable device. Our setup uses harvested energy from HF field of a smartphone or reader, to switch an electrochromic display after rectification to prove authenticity of a product. Our novelty is in upscaling the manufacturing process to be fully printable and R2R processable in high-throughput conditions simulating industrial environment, i.e. in pilot scale. The printing workflow consisted of 11 R2R printed layers, all done in sufficient quality and registration. The printed antennas showed sheet resistance values of 32.9±1.9 mΩ/sq. The final yield was almost 1500 fully printed devices, and in R2R assembly over 1400 labels were integrated with 96.5% yield. All the assembled tags were readable with mobile phone NFC reader. The optical contrast (ΔE*) measured for the ECDs was over 15 for all the printed displays, a progressive switching time with a colour change visible in less than 5 s. The smart tag is ITO-free, plastic-free, fully printed in R2R and has a good stability over 50 cycles and reversible colour change from light to dark blue.

2021 ◽  
Vol 11 (1) ◽  
pp. 378
Author(s):  
Grigorios Koutsoukis ◽  
Ivan Alic ◽  
Antonios Vavouliotis ◽  
Ferry Kienberger ◽  
Kamel Haddadi

A free-space microwave nondestructive testing and evaluation module is developed for the low-power, non-ionizing, contactless, and real-time characterization of doped composite thin-film materials in an industrial context. The instrumentation proposed is built up with a handled vector network analyzer interfaced with corrugated horn antennas to measure the near-field complex reflection S11 of planar prepreg composite materials in a roll-to-roll in-line production line. Dedicated modeling and calibrations routines are developed to extract the microwave conductivity from the measured microwave signal. Practical extraction of the radiofrequency (RF) conductivity of thin film prepreg composite materials doped with nano-powders is exemplary shown at the test frequency of 10 GHz.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Yun Kim ◽  
Tae-Youl Yang ◽  
Riikka Suhonen ◽  
Antti Kemppainen ◽  
Kyeongil Hwang ◽  
...  

Abstract Driven by recent improvements in efficiency and stability of perovskite solar cells (PSCs), upscaling of PSCs has come to be regarded as the next step. Specifically, a high-throughput, low-cost roll-to-roll (R2R) processes would be a breakthrough to realize the commercialization of PSCs, with uniform formation of precursor wet film and complete conversion to perovskite phase via R2R-compatible processes necessary to accomplish this goal. Herein, we demonstrate the pilot-scale, fully R2R manufacturing of all the layers except for electrodes in PSCs. Tert-butyl alcohol (tBuOH) is introduced as an eco-friendly antisolvent with a wide processing window. Highly crystalline, uniform formamidinium (FA)-based perovskite formation via tBuOH:EA bathing was confirmed by achieving high power conversion efficiencies (PCEs) of 23.5% for glass-based spin-coated PSCs, and 19.1% for gravure-printed flexible PSCs. As an extended work, R2R gravure-printing and tBuOH:EA bathing resulted in the highest PCE reported for R2R-processed PSCs, 16.7% for PSCs with R2R-processed SnO2/FA-perovskite, and 13.8% for fully R2R-produced PSCs.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46634-46642 ◽  
Author(s):  
Eun-Hye Ko ◽  
Hyo-Joong Kim ◽  
Sang-Jin Lee ◽  
Jae-Heung Lee ◽  
Han-Ki Kim

We demonstrate high-performance, flexible, transparent film heaters fabricated on a conductive Ag layer inserted into ITO films prepared by pilot-scale roll-to-roll (RTR) sputtering.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nada Verdel ◽  
Tomaž Rijavec ◽  
Iaroslav Rybkin ◽  
Anja Erzin ◽  
Žiga Velišček ◽  
...  

In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.


2020 ◽  
Vol 117 (35) ◽  
pp. 21155-21161 ◽  
Author(s):  
Jung Tae Lee ◽  
Changshin Jo ◽  
Michael De Volder

Ultrathick battery electrodes are appealing as they reduce the fraction of inactive battery parts such as current collectors and separators. However, thick electrodes are difficult to dry and tend to crack or flake during production. Moreover, the electrochemical performance of thick electrodes is constrained by ion and electron transport as well as fast capacity degradation. Here, we report a thermally induced phase separation (TIPS) process for fabricating thick Li-ion battery electrodes, which incorporates the electrolyte directly in the electrode and alleviates the need to dry the electrode. The proposed TIPS process creates a bicontinuous electrolyte and electrode network with excellent ion and electron transport, respectively, and consequently achieves better rate performance. Using this process, electrodes with areal capacities of more than 30 mAh/cm2are demonstrated. Capacity retentions of 87% are attained over 500 cycles in full cells with 1-mm-thick anodes and cathodes. Finally, we verified the scalability of the TIPS process by coating thick electrodes continuously on a pilot-scale roll-to-roll coating tool.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Blanca Ramírez Barat ◽  
Emilio Cano ◽  
María Teresa Molina ◽  
Miguel Antonio Barbero-Álvarez ◽  
Juan Antonio Rodrigo ◽  
...  

AbstractColour changes of cultural heritage objects can be related with degradation of materials, thus a proper colour monitoring system can be used to detect conservation problems. With this purpose, a monitoring methodology for cultural heritage preventive conservation based on tailored colour reference charts and image analysis is proposed.Reference colour charts have been designed and tested for use in museums. Charts containing 64 colour patches have been printed using high-stability inks on 4 different substrates: Acid-free paper SkyLight, Acid-free paper covered with a propylene film, FOREX® and GlassPack. The stability has been studied by accelerated ageing in an UV chamber, and the harmlessness of the materials by Oddy Test. The final selection of material, laminated paper, is a balance between the colour change upon ageing and the performance in the Oddy Test. Using this material and the proposed design, colour change of copper and silver coupons has been assessed using images that are adjusted and calibrated by an adaptive calibration framework employing a given set of reference colours which homogenises the visual information in the supplied images. Thus, regardless of the camera of origin, any processed picture will deliver reliable information of the state of the colour in the metal surfaces at the moment it was taken.Results demonstrate the adequacy of the approach and the design for colour calibration, so these charts can be used to monitor colour change of sensitive materials –metal coupons– using photographs. As colour change of reference metals is a consequence of corrosion by environmental factors this may be used as a measure of air quality in museum environments. This methodology can be used to design a low-cost preventive conservation tool, where colour change of metal coupons –or other reference materials– can be followed through image analysis of pictures taken periodically by conservators or visitors, introducing citizen science in the conservation strategy.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Sign in / Sign up

Export Citation Format

Share Document