scholarly journals Research on improving the discharge cutting efficiency of N-type high-resistance silicon based on electroless plating

Author(s):  
Zhibin Chen ◽  
Mingbo Qiu ◽  
Jinchao Zhao ◽  
Yan Qin ◽  
Chuangchaung Guo ◽  
...  
Author(s):  
M. S. Kukurudziak ◽  
O. P. Andreeva ◽  
V. M. Lipka

The paper presents the results of development, optimization and improvement of p–i–n photodiode technology based on high-resistance p-type silicon with increased responsivity at a wavelength of 1060 nm. The optimal material was selected and the technological modes optimal for solving the set task were established and worked out іn the course of research.


1990 ◽  
Vol 203 ◽  
Author(s):  
S.Simon Wong ◽  
James S. Cho ◽  
Ho K. Kang ◽  
C.H. Ting

ABSTRACTIncreases in cross-talk disturbance, signal delay and current density have a significant impact on the performance of integrated systems as the metal pitch continues to be scaled down. A metal, such as copper, which has high conductivity and high resistance to migration, will greatly alleviate these problems. A selective technique for the deposition of copper, such as electroless plating, is highly desirable because it circumvents the potential problem of dry etching copper and inherently planarizes the surface topography.


2011 ◽  
Vol 41 (19) ◽  
pp. 20
Author(s):  
JEFFREY S. EISENBERG
Keyword(s):  

1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-101-Pr8-107
Author(s):  
F. J. Martí ◽  
A. Castro ◽  
J. Olivares ◽  
C. Gómez-Aleixandre ◽  
J. M. Albella
Keyword(s):  

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

2017 ◽  
Vol 4 (2) ◽  
pp. 149-161
Author(s):  
Berton Sianturi

Crassocephalum crepidioides on Cornfields in Dairi Regency had been reported tobecome more difficult to control using paraquat. The objective of the research was todetermine the characteristics and the distribution of C.crepidioides resistant to paraquatin cornfields. The experiment was carried out in two steps, the first step was screeningthe population of C. crepidioides with paraquat at the recommended dose, and the secondstep, dose-response experiment for the resistance level of C. crepidioides population withdose 0, 76, 152, 304,5, 609, 1218, and 2436 g.ai /ha. In the first step experiment, paraquatdichloride was applied at 280 g.ai/ha. The treatments were arranged in a randomized blockdesign with 3 replication. The second step experiment was that the resistant populationsconfirmed in the first experiment were sprayed for their dose-response. The treatmentswere arranged in a randomized complete block design (CRBD). The results showed thatof 30 populations of C. crepidiodes, 19 populations (63.3%) were categorized to beresistant with the mortality ranging from 10.84% to 52.08%, and 11 populations (36.7%),was categorized as high resistance with mortality of 0% to 9.21%. The level ofresistance (R/S) of R-C25, R-C27, and R-C30 populations of C. crepidioides were 12,3,14,86, and 24,83 times consecutively, compared with the susceptible population. Thenumber of C. crepidioides chlorophyl leaves in susceptible populations was significantlylower than that of a resistant populations.


1996 ◽  
Vol 444 ◽  
Author(s):  
Hyeon-Seag Kim ◽  
D. L. Polla ◽  
S. A. Campbell

AbstractThe electrical reliability properties of PZT (54/46) thin films have been measured for the purpose of integrating this material with silicon-based microelectromechanical systems. Ferroelectric thin films of PZT were prepared by metal organic decomposition. The charge trapping and degradation properties of these thin films were studied through device characteristics such as hysteresis loop, leakage current, fatigue, dielectric constant, capacitancevoltage, and loss factor measurements. Several unique experimental results have been found. Different degradation processes were verified through fatigue (bipolar stress), low and high charge injection (unipolar stress), and high field stressing (unipolar stress).


1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


Sign in / Sign up

Export Citation Format

Share Document